תנו לגדול בשקט 2396
בשנת 1931 פרסם המתמטיקאי קורט גדל מאמר שהשפעתו, האמיתית או המדומה, חורגת הרחק מחוץ לעולם המתמטיקה. מה באמת יש במאמר ההוא, ואולי חשוב מכך – מה אין בו?
קורט גדל בצעירותו (מקור: ארכיון ההיסטוריה של המתמטיקה, אוניברסיטת סנט אנדרוז)
בשנת 1948, כמה שנים אחרי שהיגר לארצות־הברית, הוזמן המתמטיקאי האוסטרי־הונגרי קורט גדל (Kurt Gödel) לראיון רשמי על־מנת לקבל אזרחות אמריקאית. בימים שלפני הראיון שקד גדל על לימוד החוקה האמריקאית לפרטיה, וערב הראיון בישר לידידו אוסקר מורגנשטרן, אחד מאבות תורת־המשחקים, שעלה בידו לאתר בה פירצה משפטית־לוגית: החוקה, כך גילה, מאפשרת לדיקטטור לתפוס את השלטון באמריקה! גדל התכוון לפרט את תגליתו בפני הקונסול, אך למזלו, שני ידידיו עמם נסע לפגישה – מורגנשטרן עצמו ואלברט איינשטיין – היו בקיאים בהלכות העולם יותר ממנו, והצליחו להניאו מלעשות כן ממש במהלך הראיון. גדל זכה באזרחות וחי באמריקה עד מותו ב-‏1978. אמריקה נשארה דמוקרטיה עד היום.

הסיפור מלמד מעט על אופיו של גדל, אבל כאן מעניין אותנו היבט אחר שלו: גדל התעניין במציאת דקויות לוגיות במקומות בלתי־צפויים. הפגם שגילה בחוקה האמריקאית הוא, ככל הנראה, אנקדוטלי ושולי; בהזדמנויות אחרות עלה בידו לגלות תגליות חשובות בהרבה. עם זאת, במאמר זה ננסה להבהיר שחלק מהפרשנויות הדרמטיות שניתנו לאורך השנים לאותן תגליות הן מבוססות אף פחות מהטענה שעל האמריקאים מרחף איום הנובע מהמבנה הלוגי של החוקה.

לפני שנתחיל, כדאי להדגיש נקודה חשובה. יש רק דרך אחת להבין בדיוק ולעומק מה אומרים המשפטים שהוכיח גדל, והיא ללמוד ברצינות את החומר הרלוונטי בלוגיקה מתמטית, את המשפטים עצמם ואת ההוכחות וההרחבות שלהם. מאמר זה אינו יכול לעשות זאת, ואף לא ינסה. ממש בימים אלו יוצא לאור ספר של טורקל פרנזן, מומחה לשיבושי־גדל, העושה את מה שמאמר זה מנסה לעשות, אך בצורה יסודית יותר; הספר מעניק את כל המידע הרלוונטי גם לחסרי רקע בנושא, ומומלץ למעוניינים להעמיק.

“This drifting of figures and geometric figuring, this irruption of dimensions and transcendental mathematics, leads us to the promised surrealist peaks of scientific theory, peaks that culminate in Gödel’s theorem: the existential proof, a method that mathematically proves the existence of an object without producing the object…” – Paul Virilio


השיטה האקסיומטית

איך אפשר להוכיח דבר־מה, לדעת בוודאות גמורה שמשהו נכון? ילדים מומחים בלנהל עם מבוגרים דיאלוגים מייאשים מהסוג הבא: "אם תעזוב את הבובה, היא תיפול למים." – "למה?" – "זה נקרא כוח המשיכה. דברים נופלים." – "למה?" – "המממ... כי לכדור הארץ יש מסה...?" – "למה?" – "כי ככה אמא אומרת! די!" לוגיקה היא דרך מסודרת להוכיח דבר מתוך דבר. כיוון שכך, צריך להתחיל ממשהו, ואותו משהו נקרא הנחות־יסוד, או אקסיומות. את אלה אין אנו מוכיחים; אנו מקבלים אותן כי הן נראות סבירות, או שימושיות למטרה מסויימת. אחרי שהחלטנו על האקסיומות עלינו להסכים גם על כללי־היסק לוגיים, ואז אפשר לגזור מסקנות בצורה פשוטה: כל מסקנה היא או בעצמה אקסיומה, או שהיא נובעת ישירות ממסקנות קודמות על־ידי אחד מכללי־ההיסק.

שיטת־החקירה הזו, "השיטה האקסיומטית", היא עתיקת־יומין. למרות שהיא לא מאפשרת לדעת דברים "בוודאות גמורה", היא לפחות מקלה עלינו לברר בדיוק על מה אנו מסתמכים כשאנו טוענים משהו – מהן האקסיומות העומדות בבסיס הטענה, ומהם כללי־ההיסק הלוגיים בהם השתמשנו כדי לעבור מטענה לטענה. השיחה בין הילד לאמו מדגימה שליותר מזה לא ניתן לצפות: תמיד אפשר לשאול עוד "למה?", וכך להטיל ספק במה שקיווינו שהוא מובן־מאליו. דיאלוג ידוע של לואיס קרול מדגים שגם המרכיב השני בשיטה, כללי־ההיסק, אינו חסין בפני הטלת ספק אין־סופית שכזו.

במתמטיקה, במיוחד, זכתה השיטה האקסיומטית להצלחה רבה, החל מפיתוח הגיאומטריה על־ידי אוקלידס לפני למעלה מאלפיים שנה. לשיטה האקסיומטית במתמטיקה יש כמה מאפיינים ייחודיים, וכדאי להזכיר שלושה מהם. ראשית, האקסיומות בתורות מתמטיות אינן אמפיריות; לעיתים הן הגדרות שרירותיות לגמרי ("חבורה היא קבוצה עם פעולה המקיימת..."), ולעיתים הן מבטאות אמיתות בסיסיות של ההכרה שלנו ("שני גדלים השווים לגודל שלישי, שווים ביניהם"). שנית, כללי הגזירה במתמטיקה מתבססים על לוגיקה בוליאנית פשוטה של "אמת" ו"שקר"; אין באמצע, בערך, אולי או לפעמים.

שלישית, התחום המתמטי העוסק בנושאים הללו משתמש במונחים המוכרים לנו משפת היום־יום – "שפה", "תורה", "הוכחה", "אמת" ו"עקביות". אבל, כדרכה של מתמטיקה, המשמעות של המונחים הללו היא כאן מדוייקת, פורמלית, וכתוצאה מכך שונה למדי ממשמעותם הרגילה. "תורה", למשל (המכונה לעתים גם "מערכת"), היא אוסף של אקסיומות וכללי־היסק; "הוכחה" בתורה היא סדרה של "נוסחאות", שכל אחת מהן היא שרשרת של סימנים ב"שפה", והנוסחה האחרונה בסדרה היא הטענה אותה רצינו להוכיח (והיא, אם כך, "יכיחה"). הכללים הקובעים האם הוכחה כזו היא תקפה הם לגמרי מכניים, או "תחביריים": הם מתייחסים אך ורק לשרשראות הסימנים, ולא למשמעויות השונות שאנחנו יכולים לייחס לסימנים הללו. מושג ה"אמת", לעומת זאת, הוא מושג סמנטי, וגם לו יש הגדרה פורמלית התלויה ב"מודל" של השפה.

בשל מחלוקות מתמטיות שונות (וכמה שגיאות) שהתגלעו בסוף המאה ה-‏19, התחזק הרצון להבהיר בדיוק אילו אקסיומות דרושות במתמטיקה, ובפרט, לברר האם אפשר להיפטר מכמה הנחות שנויות במחלוקת. נסיון מסוג זה הופיע בספרם המונומנטלי של ראסל ו־ווייטהד "פרינקיפיה מתמטיקה" (PM), ונמשך כתכנית מעט מעורפלת המכונה היום "תכנית הילברט". על רקע זה נולד משפט גדל.

"The notion of constructibility implied by the axiom of choice associated to what we have just set forth for poetic language, explains the impossibility of establishing a contradiction in the space of poetic language. This observation is close to Gödel's observation concerning the impossibility of proving the inconsistency [sic] of a system by means formalized within the system." – Julia Kristeva


מה גדל כן

כולנו מכירים מילדותנו את המספרים הטבעיים: אחת, שתיים, שלוש והבאים אחריהם. בבואנו לחקור את תכונותיהם המתמטיות, אנו מעוניינים – בהתאם לשיטה שהוצגה לעיל – לבחור מספר קטן של אקסיומות מהן נוכל לגזור משפטים וטענות על המספרים האלה, תוך שימוש בכללי־היסק פורמליים. כיצד נבחר את האקסיומות? מצד אחד, השאיפה היא לבחור מעט כאלה, כדי שיקל עלינו להבטיח שהן באמת טבעיות ונכונות, ואינן מובילות לסתירה. מצד שני, אם נבחר מעט מדי, ייתכן שהן לא תספקנה כדי להוכיח כל מה שנכון. התכונה הרצויה הראשונה של התורה נקראת "עקביות", והשניה "שלמות". שני אלה הם מושגים פורמליים, בעלי הגדרה חד־משמעית: עקביות פירושה שאין הוכחה של דבר וגם של היפוכו; שלמות פירושה שיש הוכחה של כל דבר או היפוכו.

אוסף האקסיומות של תורה לא חייב להיות סופי. מסיבות טכניות, אפילו תורות פשוטות יחסית עבור המספרים הטבעיים מחייבות מספר אקסיומות אין־סופי. לאור זאת, עלינו לדרוש שיהיה תהליך חד־משמעי המאפשר לקבוע האם נוסחה מסויימת היא אקסיומה; אחרת, כשנתבונן בהוכחה מוצעת, לא נוכל אפילו לברר האם השורה הראשונה שלה היא לגיטימית. במקביל, יש לדרוש משהו דומה מכללי־ההיסק: אם מראים לנו צעד בודד בהוכחה, צריכה להיות לנו דרך לקבוע האם הוא אכן יישום של אחד מכללי־ההיסק או לא. תורה העומדת בשתי דרישות אלה נקראת "אפקטיבית".

משפטי גדל אינם חלים רק על תורות אקסיומטיות של המספרים הטבעיים. אבל – וזו נקודה חשובה – כדי שמשפט גדל יחול על תורה, היא חייבת לכלול כמות מסויימת של אריתמטיקה – כלומר, דרוש שאפשר יהיה לנסח ולהוכיח בה מספר משפטים בסיסיים בתורת המספרים. אנו נכנה תורות כאלה "אריתמטיות", למרות שזהו אינו מונח מקובל במיוחד. כעת נוכל לנסח במידה סבירה של דיוק את המשפטים של גדל.

המשפט הראשון: אם T תורה אריתמטית, אפקטיבית ועקבית, אז יש נוסחה G כך ש-T אינה מוכיחה את G וגם אינה מוכיחה את שלילתה של G. מכאן ש-T איננה שלמה.

המשפט השני: אם T תורה אריתמטית ואפקטיבית, אז יש נוסחה C האומרת "T היא עקבית". אם, בנוסף, T עקבית, הנוסחה C אינה ניתנת להוכחה ב-T.

למען הדיוק, אלו אינם המשפטים שהוכיח גדל ב-‏1931. גדל לא התייחס במאמרו לתורות אריתמטיות כלליות, אלא לתורה ספציפית המכונה P הקרובה למערכת PM שהוזכרה לעיל, ורק ציין שההוכחה תעבוד באותו האופן גם בתורות דומות אחרות. הוא תכנן לפרסם מאמר־המשך בו יכליל את המשפטים, אך בסופו של דבר לא עשה זאת – בין היתר, כי אחרים עשו זאת במקומו. יתרה מזאת, בניסוח המשפט הראשון דרש גדל תכונה חזקה יותר מעקביות של T, ולכן הטענה שלו היתה חלשה יותר; המשפט שהצגנו הוא חיזוק למשפט של גדל, שהוכח על־ידי רוסר ב-‏1936. גם למשפט השני יש כיום חיזוקים שונים.

הטענה G המופיעה בניסוח המשפט הראשון מכונה לפעמים "נוסחת גדל עבור T", ולעיתים טועים וקוראים לה "משפט גדל". כדי למנוע אי־הבנות, נבחין בין משפט גדל (שהוא המשפט הראשון, או השני, בהתאם להקשר), לבין נוסחת גדל, שהיא הנוסחה G המופיעה במשפט הראשון.

“Ever since Gödel showed that there does not exist a proof of the consistency of Peano’s arithmetic that is formalizable within this theory (1931), political scientists had the means for understanding why it was necessary to mummify Lenin and display him to the “accidental” comrades in a mausoleum, at the Center of the National Community.” – Régis Debray


מה גדל לא

מאז פרסום המאמר של גדל, ובמיוחד לאחר פרסומם של ספרים פופולריים העוסקים בו, מופיעות פרשנויות שונות ומשונות למשפטים שלו בתחומים מגוונים להפתיע כגון פוליטיקה, אפיסטמולוגיה, אבולוציה וביקורת שירה. בחלק מהמקרים מדובר באסוציאציות חופשיות לגמרי – בין אם הפרשן מודה בכך ובין אם לאו – ואז אין הרבה מה לעשות: קוראים, צוחקים או בוכים, ועוברים הלאה. במקרים אחרים, מנסים הפרשנים לגזור מסקנות קונקרטיות מתוכן המשפטים או מהוכחתם. בחלק ניכר ממקרים אלה נופלות שגיאות ענייניות בהבנת הטענות המתמטיות או בשימוש בהן, וקצת מטעויות אלה אנסה להאיר כעת.

ניסוחים פופולריים שגויים של משפטי גדל הם "אף תורה מתמטית אינה שלמה" ו"אף תורה מתמטית לא מסוגלת להוכיח שהיא עקבית". לעיתים הניסוחים השגויים נובעים מרשלנות גרידא, אך לעיתים קרובות יותר, הם מעידים על חוסר־הבנה רציני של המשפטים, שעל יסודו נבנים מגדלים פורחים. מה, בדיוק, שגוי כאן? כמה דברים.

"אף תורה מתמטית" – טעות. משפטי גדל מציבים דרישות מסויימות מהתורות עליהן הם חלים. כשהדרישות אינן מתקיימות, המסקנות פשוט אינן נכונות. מאז ההוכחה המקורית של גדל הדרישות עודנו וחודדו, אבל לא נעלמו: הן נותרו קריטיות להוכחת המשפטים. יש תורות מתמטיות חשובות, מעניינות ומאוד לא־טריוויאליות שהן שלמות, ומשפט גדל לא חל עליהן; נזכיר כדוגמאות את הגיאומטריה האוקלידית, את התורה RCF (שדות סגורים־ממשית), ואפילו מספר תורות הדנות במספרים הטבעיים כגון PrA (אריתמטיקת פרסבורגר). כדאי לציין שבעולם המתמטי, הדרישות של משפט גדל נחשבות "חלשות" – כלומר, "רוב" התורות המעניינות כן תקיימנה אותן, ולכן תהיינה חשופות למשפט. אך יש לזכור שני דברים: אחד, "רוב" זה כאמור לא הכל; ושניים, כשמנסים להחיל את משפט גדל על תחום שאיננו מתמטי גרידא, הדרישות הללו הופכות קשות מאוד למילוי, ואין בדרך־כלל שום סיבה להניח שתורה בתחום אחר (נניח, כלכלה) תהיה פגיעה למסקנות של משפטי גדל.

"לא מסוגלת להוכיח" – כאן יש טעות יותר עדינה, אבל לא פחות חשובה. כאמור, "הוכחה" בלוגיקה מתמטית היא מושג פורמלי, הקשור, אך לא זהה, למושג "הוכחה" המוכר לנו משפת היום־יום. ביום־יום אנחנו מציינים בביטוי "הוכחה" דבר־מה המדגים מעל לכל ספק שטענה מסויימת היא נכונה. בלוגיקה, הוכחה היא סדרה של נוסחאות ותו־לא. לעתים יש קשר הדוק בין המושגים, אבל הם אינם זהים.

דוגמא פשוטה: תורה מתמטית מוכיחה פורמלית כל אקסיומה שלה, אך בשפת היום־יום לא היינו אומרים שמי שהניח שהירח עשוי צמר גם הוכיח שהירח עשוי צמר. לכן, הוכחה פורמלית לא בהכרח מהווה הוכחה־במובן־הרגיל של נכונות, ובאותו אופן, היעדר הוכחה פורמלית לא בהכרח מעיד על היעדר הוכחה־במובן־הרגיל. כל זה, יש להדגיש, היה גלוי וידוע עוד לפני גדל.

כדי להדגים את הקושי בצורה חריפה אף יותר, נשתמש בפעלול קטן. ניקח תורה מתמטית פשוטה עליה חל משפט גדל, למשל התורה המכונה PA (אריתמטיקת פֵּאָנוֹ), הבנויה מאקסיומות פשוטות וסבירות מאוד. עכשיו נבנה תורה מלאכותית Z שהאקסיומות שלה הן בדיוק אלו של PA, יחד עם אקסיומה אחת נוספת האומרת "PA איננה עקבית". הטענה הזו (כמו C המופיעה במשפט גדל) ניתנת לניסוח פורמלי בשפה של PA, ועל־כן אפשר להוסיף אותה כאקסיומה.

כעת נקבל כמסקנה מוזרה ממשפט גדל שאם PA עקבית (וזוהי הנחת עבודה סבירה), אז גם Z עקבית (הוכחה: תרגיל לקורא). עכשיו לפנינו תורה עקבית Z שבה ניתן להוכיח את הטענה השקרית "PA איננה עקבית"! אין פה אסון, אלא אבחנה פשוטה שתורה עקבית אינה בהכרח נאותה, כלומר אינה מוכיחה רק משפטים אמיתיים. הנקודה החשובה היא שאם יש לנו סיבה להטיל ספק בעקביות (או בנאותות) של תורה מסויימת, הוכחה של עקביות זו בתוך אותה תורה לא תועיל בכלום – ממילא אנו מטילים ספק בתורה, אז מדוע שנאמין לה כשהיא מוכיחה שהיא עקבית? מצד שני, אם יש לנו סיבות טובות להאמין שתורה היא כן עקבית, חסרונה של הוכחת־עקביות־פנימית כזו לא צריך להפריע לנו כלל.


קורט גדל עם אלברט אינשטיין (מקור: ארכיון ההיסטוריה של המתמטיקה, אוניברסיטת סנט אנדרוז)



נעבור לטענה שגויה נוספת: "יש אמיתות שלוגיקה ומתמטיקה אינן מסוגלות להוכיח". נכון שבכל תורה העומדת בתנאים מסויימים יש משפטים נכונים שהיא לא מוכיחה; אך מכאן לא נובע שיש טענה נכונה שאיננה יכיחה באף תורה. מתמטיקאים קוראים לשגיאה זו "החלפת סדר הכמתים", והיא שגיאה גסה ונפוצה. מכך ש"לכל אדם, אפשר למצוא מכונית שלא הוא בנה" לא נובע ש"יש מכונית שאף אחד לא בנה אותה".

השגיאה הזו מופיעה, למשל (כנראה סתם מחוסר תשומת־לב), ברשימה שכתב שמעון שוקן, פרופסור למדעי־המחשב. במקרים אחרים, היא משמשת קרש־קפיצה לטענות מרחיקות־לכת על גבולות הרציונליזם ומותר האדם מן המכונה.

שתי שגיאות נפוצות נוספות הן הטענות "יש משפטים שבני־אדם רואים שהם אמיתיים, אבל תורות פורמליות לא יכולות להוכיח" ו"יש משפטים שבני־אדם רואים שהם אמיתיים, ומחשבים לא יוכלו לראות זאת לעולם". הצהרות מסוג זה נאמרו על־ידי הפילוסוף ג'ון סרל (Searle), הפיזיקאי רוג'ר פנרוז (Penrose) ואחרים. האם יש באמת משפטים שאנחנו רואים שהם אמיתיים, אבל אי־אפשר להוכיח אותם פורמלית? כותב שורות אלה, אישית, משוכנע שאין; בכל אופן, משפט גדל בהחלט לא מספק לנו כאלה, וכמוהו גם לא משפטים קרובים לו (כגון משפט טיורינג על בעיית העצירה).

אחד המועמדים הפופולריים למשפט כזה הוא נוסחת־גדל G הנזכרת במשפט הראשון. בהוכחתו המקורית בנה גדל את הנוסחה G כך שתהווה ניסוח פורמלי לטענה "G אינה יכיחה בתורה T". כיוון ש-G אכן מתגלה כלא־יכיחה, מסתבר שהיא נכונה, וש-T אינה יכולה להראות זאת – והרי לנו טענה שאנחנו, יצורים נבונים הקוראים את ההוכחה של גדל, רואים שהיא נכונה, ו-T אינה רואה זאת. האמנם מש"ל?

לא. הטעות היא שההוכחה לא מראה ש-G נכונה; היא רק מראה שאם T עקבית, אז G נכונה, ובדיוק את הרישא של המשפט הזה אנחנו לא יודעים (ו-T לא יכולה להוכיח). גדל היה מודע היטב לדקות הזו, והקדיש את סעיף 4 במאמרו המקורי לניתוח ההשלכות שלה. תוצאות הניתוח הן בדיוק המשפט השני שלו: את הטענה "אם T עקבית, אז G נכונה" בהחלט אפשר להוכיח ב-T, וקל להראות ש-G שקולה ב-T לנוסחת העקביות, אותה כינינו C.

אכן מבלבל, אבל זו עדיין לא סיבה לומר שגדל הוכיח שבני־אדם אינם מחשבים. נדגיש שוב את הנקודה העיקרית: את מה שאנחנו, בני־האדם, יכולים לראות, יכולה גם התורה הפורמלית (למשל, שאם T עקבית אז G אינה ניתנת להוכחה); את מה שהתורה הפורמלית לא יכולה להוכיח (את G עצמה), גם אנחנו לא יכולים. ככל הידוע למשפט גדל, בני־אדם אינם יודעים יותר מתורות פורמליות.

תפיסה שגויה אחרת בהקשר זה גורסת כי הוכחת משפט גדל כרוכה ב"קפיצה מחוץ למערכת", או שהיא מעין מטא־הוכחה הדורשת הסתכלות "מבחוץ". האמת היא הפוכה לחלוטין: משפט גדל הוא נכון בדיוק משום שאת השקילות "G נכונה אם ורק אם G איננה יכיחה ב-T" כן אפשר להוכיח בתוך T עצמה, בלי כל הסתכלות מבחוץ. זהו לב־לבו של ההישג של גדל: הוא הראה שתורות אריתמטיות פשוטות מסוגלות להביע פורמלית משפטים "על עצמן". תורות של המספרים הטבעיים אינן מוגבלות רק למשפטים אריתמטיים כגון "יש אין־סוף מספרים ראשוניים", אלא הן מסוגלות לנסח ולהוכיח משפטים מסוג "תורה זו לא מוכיחה ש...".

מה גדל בכלל לא

יש עוד שלל דוגמאות לטיעונים מופרכים הנשענים על אי־הבנה של משפט גדל, ולא נוכל למנות אפילו את רובם. כשבוחנים טיעונים מסוג זה, כדאי לשמור על פרופורציה, ולזכור את ההקשר: משפט גדל הוא משפט מתמטי הדן, בסופו־של־דבר, במניפולציות פורמליות של סימנים על נייר. כדי להקיש ממנו על היבט כלשהו של ההווייה האנושית, ולא סתם כמטפורה, דרושה קפיצה, שבמקרים רבים מאוד אינה זוכה לכל הצדקה.

טורקל פרנזן מצא את משפט גדל בקבוצת דיון על מוסיקת היפ־הופ. עד כמה קשה למצוא פרשני־גדל בפורומים אינטרנטיים ישראליים פופולריים? חיפוש בן פחות מעשר שניות בגוגל העלה מסמך, מינואר 2005, הכולל מספר לא מבוטל של היגדים מופרכים מהסוג שהזכרנו. החל מ"אדם לעולם לא יבין את עצמו", דרך "משפט זה, יותר מכל דבר אחר בעולם המדעי, ממחיש את הפער בין 'אני' ו'אחר' ", ועד למשפט הסיום התמוה "מה הדבר אומר על מתמטיקאים, אם לקח להם כל כך הרבה זמן להגיע לאותה מסקנה שכל איש רוח יודע, שאין אמת אחת? ולראיה, עדיין לא לגמרי יודעים איך להתמודד עם תובנה זו..."

צילו של קורט גדל עדיין מרחף על הארץ, מעורפל ומטושטש. די, הניחו לו.



רוב תודות לאורי גוראל־גורביץ' ולאילן עמית על עזרתם בחיבור מאמר זה.
קישורים
קורט גדל
ספר של טורקל פרנזן - מתוך אתר אמזון
דיאלוג ידוע של לואיס קרול
פרינקיפיה מתמטיקה - מאמר
תכנית הילברט - מאמר
רשימה שכתב שמעון שוקן
בעיית העצירה
מסמך - מתוך פורום "תפוז"
המאמר המקורי של גדל
פרסום תגובה למאמר

פרסומים אחרונים במדור "מדע"


הצג את כל התגובות | הסתר את כל התגובות

  מעניין ומחכים • גדי אלכסנדרוביץ' • 2 תגובות בפתיל
  בקשה • סמיילי • 44 תגובות בפתיל
  ללא כותרת • דובי קננגיסר • 45 תגובות בפתיל
  עזרה בשעורי בית • האייל האלמוני • 4 תגובות בפתיל
  אולי אפשר לתת כתוספת • ניר • 3 תגובות בפתיל
  ללא כותרת • האייל האלמוני • 11 תגובות בפתיל
  כן, אבל... • עומר • 310 תגובות בפתיל
  יופי • ד.ק. • 266 תגובות בפתיל
  ספר מומלץ בנושא • אייל המתורגל • 31 תגובות בפתיל
  בעט אלון, בעט • שוטה הכפר הגלובלי • 3 תגובות בפתיל
  זה נכון באופן כללי על מתמטיקה • יוסי נתנזון • 107 תגובות בפתיל
  שאלת תם • צב מעבדה • 3 תגובות בפתיל
  בטעות מראש • האייל האלמוני • 20 תגובות בפתיל
  תודה • צבי • 2 תגובות בפתיל
  מברוק! • אביב י.
  שאלה • האייל האלמוני • 2 תגובות בפתיל
  מאמר מצוין • האייל (מתמטיקה!) האלמוני • 2 תגובות בפתיל
  אמת שקר ומה שבאמצע • שוקי שמאל • 4 תגובות בפתיל
  אקסיומת המקבילים • גדי אלכסנדרוביץ' • 13 תגובות בפתיל
  הרחבה בנושא גדל • אלון • 2 תגובות בפתיל
  ללא כותרת • אותה אלמונית • 14 תגובות בפתיל
  מילון מונחים • עוזי ו. • 29 תגובות בפתיל
  שאלה נבזית • עדי סתיו • 24 תגובות בפתיל
  שאלות • מתעניין • 9 תגובות בפתיל
  מה הבנת? • יהושע עציון • 126 תגובות בפתיל
  ללא כותרת • המודיע • 23 תגובות בפתיל
  טורקל פרנזן • אלון עמית • 50 תגובות בפתיל
  משפטי גדל מגיעים לביולוגיה • גדי אלכסנדרוביץ' • 3 תגובות בפתיל
  "אם המחשבה המתמטית לקויה, היכן נמצא את האמת?" • גדי אלכסנדרוביץ' • 18 תגובות בפתיל
  מוזאיקה איסלמית ומתמטיקה גבוהה • רון בן-יעקב • 3 תגובות בפתיל
  שאלה • שחר • 3 תגובות בפתיל
  ועכשיו הסרט • האייל האלמוני • 2 תגובות בפתיל
  הסבר מאוד טוב • יוני • 2 תגובות בפתיל
  למה יש שאלות שאין עליהן תשובות • יובל נוב • 17 תגובות בפתיל
  באיחור של עשור... מאמר יפה אבל התעלמת מטארסקי • דני גליק • 15 תגובות בפתיל
  דו סוטוי על גדל • יובל נוב
מספרי גדל ואינסוף אקטואלי, שאלה 708883
ציטוט מהמאמר של אלון: "המשפט הראשון: אם T תורה אריתמטית, אפקטיבית ועקבית, אז יש נוסחה G כך ש-T אינה מוכיחה את G וגם אינה מוכיחה את שלילתה של G. מכאן ש-T איננה שלמה."

בשאלתי אני משתמש במספרי גדל באופן הבא (אשר אינו משתמש ברקורסיה כפי שנעשה במשפט הנ"ל, מסיבה שתצוין בהמשך):

מבחינה תחבירית (ללא הענקת משמעות (ללא סמנטיקה)) קיים קובץ אינסופי A כך ש-{} שייכת ל-A, ולכל x השייך ל-A, האיחוד בין x ל-{x} שייך גם הוא ל-A (זהו למעשה תיאור מילולי של אקסיומת האינסוף).

מבחינה תחבירית x --> xU{x} הינה פונקצית שייכות חח"ע של A.

הבה ונגדיר 2 מודלים (נעניק משמעות) לפונקציה הנ"ל, כדלקמן:

מודל 1:

יהי כל x אקסיומה (נוסחה מוגדרת היטב שאינה זקוקה להוכחה) ב-A.

יהי כל xU{x} משפט (נוסחה מוגדרת היטב הזקוקה להוכחה) ב-A.

תהי A קבוצה אינסופית, כאשר מושג האינסוף מוגדר במובן האקטואלי (A הינה קבוצה אינסופית ושלמה (אף לא אחד מאיבריה נפקד) ולכן אין שימוש ברקורסיה, כפי שנעשה במשפטי אי-השלמות של גדל).

כל משפט ב-A מקודד ע"י מספר גדל, כאשר אחד מהמשפטים המסומן כ-G מצהיר: "לא קיים מספר m, כך ש-m הינו מספר גדל של הוכחת G ב-A".

היות וכל אינסוף הנוסחאות המוגדרות היטב כבר נמצאות ב-A) A הינה קבוצה אינסופית ושלמה) קיים מספר גדל m ב-A המוכיח את G ב-A, ובאנו לידי סתירה וזאת, מפני ש-A מוגדרת עפ"י מושג האינסוף האקטואלי.

מודל 2:

יהיו כל x וכל xU{x} אקסיומות (נוסחאות מוגדרת היטב שאינן זקוקות להוכחה) ב-A.

אקסיומה G ב-A מצהירה: "לא קיים מספר m, כך ש-m הינו מספר גדל של הוכחת G ב-A".

על אף ש-A מוגדרת עפ"י מושג האינסוף האקטואלי, איננו באים לידי סתירה, היות ו-G הינה אקסיומה (נוסחה מוגדרת היטב שאינה זקוקה להוכחה) ב-A.

אך מודל 2 אינו מעניין, כי הוא מייתר את עצם הצורך בהוכחות (שזהו עיקר עיסוקם של מתמטיקאים).

-----------

האם (עפ"י המודלים לעיל) ניתן להסיק כי מושג האינסוף האקטואלי במסגרת תורת קבוצות למעשה מונע מתמטיקה מעניינת?
מספרי גדל ואינסוף אקטואלי, שאלה 708901
אציין כי בשאלתי הנ"ל ניתן להחליף את x --> xU{x} ב-x --> {x},כדלקמן:

מבחינה תחבירית (ללא הענקת משמעות (ללא סמנטיקה)) קיים קובץ אינסופי A כך ש-{} שייכת ל-A, ולכל x השייך ל-A, האיבר {x} שייך גם הוא ל-A (זהו למעשה תיאור מילולי קבוצה אינדטקדיבית עפ"י גרסתו של צרמלו).

מבחינה תחבירית x --> {x} הינה פונקצית שייכות חח"ע של A.
מה לגבי החוק השני של התרמודינמיקה? 746032
באיחור של כ- 15 שנה מאז הוצאת מאמר זה...

החוק השני של התרמודינמיקה, שלא הוכח מתמטית, טוען כי דלתה S (אנטרופיה) במערכת תמיד תהיה גדולה או שווה מ- 0.דהינו לתהליכים פיזיקליים תמיד יש כיוון תנועה מותר. זאת אומרת כי כל מה שנעשה, רק יוסיף למערכת אנרגיה וזו רקתגדיל את האנטרופיה. זאת אומרת במילים פשוטות שככול שנשקיע יותר בלעשות סדר, רק נגדיל את אי הסדר. מתוך נקודת ראות של מהנדס כימיה, שנאבק בלהבין את חוקי גדל, האם ניתן לקשור בין הנושאים לכדי הבנה מעמיקה יותר לגבי הנכונות והקיום התמידי של החוק השני של התרמודינמיקה?

באמת שאשמח לקבל תשובה לעניין.

רונן.
מה לגבי החוק השני של התרמודינמיקה? 746035
אינני רואה (והאמת שאיני מסוגל לדמיין) כל קשר בין משפטי אי-השלמות של גדל לבין החוק השני של התרמודינמיקה.
מה לגבי החוק השני של התרמודינמיקה? 746044
טוב, לדמיין תמיד אפשר, למשל:
גם האנטרופיה גדל(ה), גם אם לא תמיד בשקט‏1.

1 ע"ע כותרת המאמר

חזרה לעמוד הראשי פרסום תגובה למאמר

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים