בתשובה לדובי קננגיסר, 12/01/04 10:47
מן המפורסמות היא. 190182
בסדר. טייק 1.

"מיפקד" זה כשיש לך אוכלוסייה ואתה סופר, כמה אנשים נופלים לכל מיני קטיגוריות. דוגמה: אתה זורק קובייה 120 פעם, ומקבל 18 פעמים 1, 23 פעמים 2, וכו' (שש קטגוריות). או, אתה שואל מבקרים באתר האינטרנט שלך איך הם מעדיפים את המים שלהם (שבע קטגוריות). וכאלה.

קורה הרבה שאתה צריך להשוות שני מיפקדים כאלה ולהחליט אם הם "דומים" או לא. למה שתעשה דבר כזה? למשל, אתה רוצה להבין אם הקובייה מזוייפת, ע"י שתשווה את המיפקד שקיבלת עם זה הצפוי בקובייה הוגנת (20 פעמים 1, 20 פעמים 2 וכו'). או, אתה רוצה לראות אם תוצאות הסקר שנערך באתר המתחרה במדגסקר דומות לשלך.

בשביל זה, אתה לוקח את שני המיפקדים ומחשב מהם גודל הנקרא "חי בריבוע". אזהרה: כמו שהמבחן הזה מנוסח בד"כ, יש אי-סימטריה ביחס לשני המיפקדים: אחד אמור להיות "הטבעי", והשני הוא זה שבודקים אם הוא "חריג" או לא. במקרה של הקוביה, ברור מהו "הטבעי": התחזית לקובייה הוגנת. במקרה השני, המממ... טוב,זה ברור שסקר האייל הוא הנכון ויש לבדוק אם המדגסקרים נורמלים או לא. אזהרה 2: בוא נניח שבשני המיפקדים יש אותה כמות נבדקים. אם אתה משווה מיפקד נמדד לעומת מפקד תאורטי, זה המצב באופן טבעי.

החישוב פשוט: אם Xi נפלו לקטגוריה i במיפקד הנמדד, ו-Ei היו "אמורים" ליפול (זה המיפקד ה"טבעי"), מסכמים את הגודל... אוף, הפונטים האלה. (Xi פחות Ei) בריבוע, חלקי Ei. אם תחשוב על זה, זה קצת הגיוני. מסתכלים על הסטייה בין הרצוי למצוי, בריבוע כדי להיות הוגנים לסטייה למעלה לעומת למטה, ומחלקים ברצוי כדי להחזיר את התשובה לסדר-גודל סביר (ההעלאה בריבוע גם מנפחת וגם דופקת את היחידות, אם אתה פיסיקאי). זה, כמובן, לא ממש הסבר, אבל זה עוזר לזכור את החישוב.

מתקבל גודל מספרי אחד, שהוא כמובן גדול יותר ככל שהסטייה בין המיפקדים רבה יותר. הגודל הזה, נקרא לו Q, הוא ה"חי בריבוע" של שני המיפקדים, והוא אמור להתפלג לפי "התפלגות חי-בריבוע עם k-1 דרגות חופש", כש-k זה מספר הקטגוריות‏1. כלומר: יש התפלגות תאורטית שאומרת לך מה הסיכוי ש-Q יהיה כך-וכך. יש להתפלגות הזו נוסחה קצת מכוערת, וכולם פשוט שואלים את המחשב או את הטבלה שלהם. אם הסיכוי ש-Q יהיה כל-כך גדול, לפי הנוסחה, הוא אחד למיליארד, אתה מסיק שיש חריגה רצינית בין הרצוי למצוי. אם הסיכוי הוא אחד לשלוש, אתה לא מתרגש: אחת מכל שלוש קוביות הוגנות תיתן Q גדול כמו זה שיצא לך.

אם לא תתבלבל, אזכיר שיש גם מצב ש-Q כל-כך *קטן* שזה לא סביר. ההתפלגות תאמר לך "הסיכוי לקבל Q כזה או יותר הוא 99.9999999999%". כלומר, יש התאמה מופלאה מדי בין המיפקדים. מישהו רימה? הקובייה מתוכנתת ליפול כל פעם על המספר הבא? משהו כזה.

זהו, בערך. אפשר להסביר עוד הרבה, אבל תגיד איך זה נראה וננסה שוב.

1 למה k-1? כי אם אתה יודע את התוצאות של k-1 קטגוריות ואת כמות הנבדקים, אתה יודע כמה נפלו לקטגוריה ה-k. לכן יש רק k-1 "דרגות חופש".
נוסחאות 190187
הבעיה היא לא עם הפונטים אלא עם יוניקוד. כדי לכתוב נוסחאות פשוט עוברים לשורה חדשה, ונמנעים מעברית:
((Ei-Xi)^2)/Ei
נוסחאות 190188
הבנתי. זה נראה רע (אצלי לפחות) עד שלוחצים על ''אשר''. תודה.
מן המפורסמות היא. 190191
אוקיי, לא רע. הבהרה: Q הוא הסכום של הנוסחה ההיא שטל כתב עבור כל ה-iים, (כלומר כל הקטגוריות) נכון?

אם כן, אז הבנתי. אבל זו לא חוכמה, כי הבנתי את זה כבר עשרות פעמים. עכשיו רק נשאר לחכות ולראות אם אני אזכור.

ועכשיו כדי לחזור לנושא שלנו: הזנב הימני: זה בגלל שהסבירות יורדת ככל שהתוצאה יותר גדולה (ואינה תחומה כלל), וגם ככל שהיא שואפת לאפס (מעבר לנקודה משהו)?
מן המפורסמות היא. 190192
נקודה כלשהי, לא נקודה משהו...
אה, ואני מצטרף למחמיאים לתמונות דלעיל. רק שאחייניתי שלי, אם יורשה לי, חמודה יותר.
אין מצב 190194
(אלון מתאמן על סלנג עכשווי(?), מכוער בעיניו). *אחיינית* שלך יותר חמודה? מה יהיה כשתהיה לך בת?
אין מצב 190255
כשתהיה לי בת הצהרות כאלו תהיינה מלוות בתמונות להמחשה.
מן המפורסמות היא. 190193
הבהרה: בדיוק.

לזכור: אם אתה רוצה לזכור את הנוסחה, תנסה פעם אחת לחשב בעצמך דוגמה מספרית עם שש קטגוריות ותצליח. אם אתה רוצה לזכור את כל ההקשר... טוב, אולי אותה שיטה תעבוד גם.

הזנב הימני זה באמת בגלל שהסבירות להתאמה יורדת ככל ש-Q גדל, ו-Q איננו חסום. מה שקורה כש-Q שואף ל-‏0 משתקף כמובן בצד ה*שמאלי* של דבשת הגמל - וכן, נכון, אתה צודק גם פה. לכן טרחתי להזכיר שגם Q מאוד קטן הוא לא סביר.
שאלה: 190204
לא יתקבל גודל יותר משמעותי אם ננרמל את Q ע"י חלוקה במס' הקטגוריות?

(אני שואל כי בחישוב ישר הההפרשים המינימליים, Excel מחשב איזה גודל בשם R^2 שמזכיר לי את Q שלך, והוא הולך וגדל בכל פעם שאני מבצע מדידה נוספת גם אם התוצאה שקיבלתי קרובה לישר. יוצא שהאינטואיציה שלי אומרת שהישר מתאר טוב יותר את התוצאות שלי, אבל R^2 דוקא גדל).
שאלה: 190209
R בריבוע הוא מדד השונות המוסברת, והוא מבוסס על R, שהוא מקדם המתאם של פירסון. המדד הזה יגדל ככל שהמדידות תהיינה קרובות יותר לקו, כי זה מה שהוא מודד - עד כמה הקו מתאר את הנקודות באופן מהימן. האינטואיציה שלך צדקה: R בריבוע (וגם סתם R) גדול יותר, משמעו שהישר מתאר טוב יותר את התוצאות.
למיטב הבנתי, אין שום דמיון בין R (או R בריבוע) ל-Q.

והנרמול שהצעת מתבצע בשלב הטבלה - משום שאתה בודק את הסבירות בהתאם למספר דרגות החופש (שהן מספר הקטגוריות מינוס 1, כאשר משווים שני מדגמים).

(המממ... האם יתכן שלנסות ולהסביר משהו לאנשים אחרים זה מה שמסייע לי לזכור אותו?)
תודה 190213
אה, אני חשבתי לתומי שהוא מבטא דווקא את סכום ריבועי המרחקים (של הנקודות הנמדדות מהנקודות על הקו).

פירסון - זה ההוא מכאן ? http://www.larryniven.org/puppeteer/
טבלאות זה למפונקים 190252
במקום לרוץ לחפש טבלה בכל פעם שמחשבים את הסכום Q של חי-בריבוע, אפשר לזכור שה*ממוצע* של אותם ריבועים (דהיינו, Q המנורמל), אמור להיות 1 (והשונות היא 3 חלקי (מספר הקטגוריות פחות 1)).
למשל: במבחן על 6 קטגוריות יוצא Q=20. הממוצע Q/5=4 גדול משמעותית מ- 1, ולכן ההתפלגויות שאנחנו משווים שונות זו מזו. בלי טבלאות.
טבלאות זה למפונקים 190268
4 גדול משמעותית מ- 1, זהו ניסוח של מתמטיקאי. מהנדס כבר היה אומר שזה אותו סדר גודל. :)
טבלאות זה למפונקים 190301
במקרה הזה, "גדול משמעותית" פירושו שהמרחק הוא יותר מ- 4.5 סטיות תקן, ו(אפילו למהנדס) ברור שזה "גדול משמעותית".
p's in a pod 190259
דוגמא מפורסמת ל- Q קטן באופן חשוד היא הסיפור של מנדל וחוקי התורשה. אם אני זוכר נכון, התוצאות המספריות של ניסויי הכלאת האפונים שלו היו משכנעות באופן בלתי סביר, ויש שטענו שהוא "בישל" אותן כדי שיתמכו בתאוריה שלו.

היה ברשותי פעם מאמר שכותרתו היא ככותרת תגובה זו (די שנון, לא?) שטען בדיוק ההיפך, דהיינו מתח ביקורת על מותחי הביקורת על מנדל. לא קראתי את המאמר, כך שאני לא סגור על הפרטים.
p's in a pod 190277
דוגמה טובה. הסיפור צץ כפעם בפעם (נדמה לי שלאחרונה נתקלתי בו ב"הגמד של מנדל"). תשובה שנשמעת לי סבירה (כן ולא) מופיעה כאן:

בסעיף "Did Mendel fudge his data".

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים