![]() |
|
![]() |
||
|
||||
![]() |
יש יותר מאקסיומה אחת שיכולה להחליף את אקסיומת המקבילים. מי בכלל אמר שדרך *כל* נקודה צריכים לעבור 0 מקבילים, או לפחות 2 מקבילים? מי אמר שאין בכלל נקודה שעובר בה ישר מקביל אחד ויחיד? להניח אקסיומה שעוסקת בכל ישר ונקודה מחוץ לישר זו פשוט הדרך הכי מעניינת ללכת בה: היא מאפשרת ליצור גיאומטריה יותר שלמה (או ממש שלמה, אני לא בטוח). "לפחות 2 מקבילים" זו אקסיומה נוחה, כי היא יוצרת גיאומטריה מעניינת (לובצ'בסקי-בוליאי) עם כמה מודלים אוקלידיים. |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
תודה, למדתי משהו, אם כי אני בעיקר מעוניין בתשובה לשאלות 2 ו-3... | ![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
שאלה 2 קצת מכשילה: ישרים מקבילים הם אכן ישרים שלא נחתכים. מצד שני, בגיאומטרית לובצ'בסקי-בוליאי, קבוצת הישרים שעוברים דרך הנקודה הנתונה, ולא נחתכים עם הישר הנתון, זו קבוצה רציפה, שרק את הישרים הגבוליים בה מכנים "מקבילים". השאר מכונים "מצטלבים". את שאלה 3 לא ממש הבנתי. |
![]() |
![]() |
| חזרה לעמוד הראשי | המאמר המלא |
| מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים |
כתבו למערכת |
אודות האתר |
טרם התעדכנת |
ארכיון |
חיפוש |
עזרה |
תנאי שימוש והצהרת נגישות
|
© כל הזכויות שמורות |