![]() |
|
![]() |
||
|
||||
![]() |
נניח שמספר הוא הגודל שלו. מדוע, לדעתך, אנו יודעים את הגודל של 355/113 יותר טוב מאת הגודל של פאי? | ![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
כבר אמרתי במקום אחר - משום שאת הגודל של פאי איננו יכולים לדעת יותר ממספר הספרות שנחשב אחרי הנקודה. את הגודל של 355/113, אחרי שתהיה בידנו הסדרה החוזרת שלו - לא נצטרך לחשב יותר. | ![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
למה לא נצטרך לחשב יותר? נדמה לך שיש הבדל עקרוני בין חישוב הספרה הטריליון אחרי הנקודה של זה לעומת זה? אחד הוא קצת יותר פשוט, זה הכל. אגב, *הרבה* יותר קל לחשב את הספרה הטריליונית של פאי מאשר את זו של המספר הרציונלי 1/1492847932842094274853753857023950345349582503495353049583405920395024953405923053945985725295205743985394523534875 (נראה לי שאת חושבת שאם יש סדרה מחזורית, אז אנחנו "יודעים" את כולה בלי צורך לחשב, ואם לא אז לא. מה דעתך על המספר האי-רציונלי 0.101101110111101111101111110... שיש בו 1 בודד, ואז שני 1-ים, ואז שלושה, ארבעה, וכו'? נתתי לך את כל החוקיות - צריך לחשב יותר?) |
![]() |
![]() |
| חזרה לעמוד הראשי | המאמר המלא |
| מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים |
כתבו למערכת |
אודות האתר |
טרם התעדכנת |
ארכיון |
חיפוש |
עזרה |
תנאי שימוש והצהרת נגישות
|
© כל הזכויות שמורות |