|
||||
|
||||
"בתור דוגמה לקבוצה שהיא איבר של עצמה אפשר להביא את הקבוצה A המוגדרת כך: {A}" {A} היא בפירוש לא A , אז איך אתה בכלל מגיע למסקנה ש-{A} היא "איבר של עצמה של A"? כדי ש-A באמת תהיה איבר של עצמה , צריכה A להיות איבר ב-A לדוגמא: A={{},A} אבל אז יש לנו רקורסיה אינסופית של רקורסיות אינסופיות, אשר אינן נותנות לנו להגדיר את A, ולכן A לא מוגדרת עם היא איבר של עצמה, ולכן אין כזו קבוצה שהיא איבר של עצמה.מכאן שהשאלה: "האם קבוצת *כל* הקבוצות שאינן איבר של עצמן, היא איבר של עצמה או לא"? איננה שאלה רלוונטית מכיוון שאין דבר כזה "קבוצה שהיא איבר של עצמה", ולכן התשובה לשאלה היא:"קבוצת *כל* הקבוצות שאינן איבר של עצמן, איננה איבר של עצמה, ולכן היא סותרת את התנאי *כל* ולכן היא סותרת את קיומה, ולכן היא לא קיימת מלכתחילה, וכל הפרדוקס של ראסל הוא רוב מהומה על לא מאומה. מה דעתך? |
|
||||
|
||||
א. גדי הגדיר את הקבוצה A כ-{A}. גם ההגדרה שלך לקבוצה (אחרת) A כ-{A,{}}. טובה באותה מידה. אז מה אתה רוצה? ב. באופן כללי, אין שום דבר גרוע ברקורסיה אינסופית. בעצם, אני לא בטוח שאני יודע מה זו רקורסיה סופית. ג. אכן, הפרדוקס של ראסל עסק בתפיסה של תורת הקבוצות שכן אפשרה בנייה של קבוצת כל הקבוצות. בעקבות אותו פרדוקס נבנתה ZF, שלא בהכרח מאפשרת (ואפילו מונעת, אם להסתמך על הנאמר במעלה הפתיל) בנייה כזאת. |
|
||||
|
||||
האם אפשר להציג מתמטית (אל"מ) חשיבה אנושית מסוג A AND NOT A? |
|
||||
|
||||
אני לא בטוח שאני מבין למה אתה מתכוון, אבל הביטוי A AND NOT A היא טענה פורמלית תקנית לחלוטין 1. היא פשוט לא נכונה באף מערכת עקבית. 1 נו, ברוב השפות המעניינות. |
|
||||
|
||||
אני מתכוון בדיוק למה ששאלתי. דרך חשיבה אנושית שפועלת A AND NOT A, המובילה להסקנת מסקנות [ועקביות] על העולם. |
|
||||
|
||||
אתה יכול לתת דוגמה לחשיבה כזאת? (בכל אופן, בהחלט ניתן לבנות מערכות אקסיומות שלא יפעלו באותה דרך כמו הלוגיקה "הרגילה". יתרה מזאת: אם זאת מערכת אפקטיבית, ניתן לבנות אותה *בתוך* ZF. לעובדה הזאת יש גם השלכות פילוסופיות מסוימות, שיהיה לי קל להדגים אותן אם תדגים לי את אותה דרך חשיבה עליה אתה מדבר). |
|
||||
|
||||
תהליך מחשבתי מקובל לבנית משמעות לדבר מה A היא בהסתמכות על משמעותם של B,C,D ידועים. אבל לפעמים אנחנו מפעילים תהליך מחשבתי שנותן משמעות ל A ספציפי דרך הנגדה עם NOT A. למשל כשאחנו מתארים מישהו כ'גבוה' או 'רתחן' אנחנו מגיעים לזה תוך הנגדה מובלעת עם 'לא גבוה' או "לא רתחן'. במקרה השני, התהליך לוקח בחשבון את ההתנהגות שלו אותה אנחנו רואים 'צועק מכעס,' יחד עם התנהגות אלטרנטיבית מדומינת כמו 'הוא היה יכול שלא לצעוק,' ומגיעים למסקנה על אופיו. כך נתנו משמעות ל A - הערכתנו את האדם איתו אנחנו משוחחים - על ידי הנגדה בו זמנית עם NOT A. מקווה שזה יותר ברור. |
|
||||
|
||||
אתה לא מדבר על מצב שאנחנו טוענים ש-A מתקיים וגם לא-A מתקיים. אתה מדבר על זה שאנחנו יודעים מה זה A וגם יודעים מה זה לא-A. הסימון A AND NOT A איננו מתאים במקרה הזה. בכל אופן, גם במתמטיקה קורה הרבה שאנחנו מגדירים לא-A תוך שימוש בהגדרות אחרות, וכתוצאה מכך A מוגדר "אוטומטית". האם המתמטיקה *מתעסקת* בדרכי חשיבה כאלה? אני לא חושב שיש בכלל תורה מתמטית שמתעסקת בהגדרות. אני גם משער שתורה כזו לא תהיה מעניינת במיוחד. |
|
||||
|
||||
אנחנו כן טוענים ש A מתקיים וגם לא-A מתקיים. 'גבוה' 'נמוך' מתקיימים יחדיו. זה שעבור תהליך המחשבה לאחד יש חיזוק אמפירי והשני נמצא במישור מדומין-אידאי לא משנה את העובדה ששניהם קיימים לצורך התהליך. אפשר להפסיק כאן. |
|
||||
|
||||
מצד שני, אפשר גם להמשיך, אם אין לך התנגדות. זאת כן שאלה חשובה. "גבוה" ו"נמוך" אינן טענות. אלה תכונות. "אני גבוה" זו טענה. אם תרצה, גם "הייתי יכול להיות נמוך" זו טענה (על אף שהיא בעצם לא אומרת כלום 1). לא מתקיים "אני גבוה" וגם "אני נמוך". כן יכול להתקיים "אני גבוה" וכן "הייתי יכול להיות נמוך". 1 <התפלספות> האמנם? יש שתי דרכים מקובלות לעסוק בלוגיקה של טענות. הראשונה היא הגישה הבינארית, לפיה כל אות שמסמנת טענה למעשה שווה לאחד משני איברים, "אמת" או "שקר". השנייה היא הגישה הקבוצתית, שמסמנת טענה כקבוצה. כך "a או b" בלוגיקה הבינארית הופכת ל"A איחוד B" בלוגיקה הקבוצתית, "לא a" בלוגיקה הבינארית הופכת ל"משלים של A (ל-U, קבוצת כל התרחישים האפשריים)" בלוגיקה הקבוצתית, וכו'. באיזה מובן קבוצה (חלקית ל-U) היא "נכונה"? יש תרחיש אחד שהוא ה"אמת", ואותו נסמן ב-u. טענה-קבוצתית A היא "אמיתית", אם u שייכת ל-A. מעתה, לכל טענה קבוצתית שתסומן באות גדולה, נסמן את הטענה הבינארית לפיה u שייכת לה, באות הקטנה המתאימה. הבעיה מתחילה כשמסמנים גרירה ב"לוגיקה הקבוצתית" באמצעות סימן ההכלה. הבעיה היא קודם כל שבעוד "A איחוד B" ודומיהן הן קבוצות, "A מוכל ב-B" היא טענה במובן הבינארי. בעיה שנייה היא שליחסים האלה אין את אותן תכונות. עבור כל שתי טענות p,q, אחת מהן גוררת את השנייה ע"פ הלוגיקה הבינארית. כמובן שתכונה זו לא מתקיימת עבור יחס ההכלה בלוגיקה הקבוצתית. השלישית, והיא החשובה ביותר, היא שטענת ההכלה *חזקה* יותר מטענת הגרירה הבינארית. הטענה p --> q שקולה במודל הבינארי לטענה~p or q ולכן תתורגם למודל הקבוצתי כ"(u שייכת לקבוצה) P-משלים איחוד Q".לעומת זאת הטענה "P מוכלת ב-Q" אומרת ש*כל* x ב-U שייך ל-P-משלים איחוד Q. למעשה, במודל הקבוצתי ניתן לטעון טענות על כל התרחישים האפשריים-היפותטית. כך ניתן גם לומר "לא הייתי יכול להיות נמוך". <\התפלספות> |
|
||||
|
||||
אם כך, חבל לקבור את הנושא הזה תחת הררי המונדיות, מה עוד שסביר שהדיון הזה יהיה שקול למחיאת ידים בכף יד אחת (אני היא היד החסרה, אם אתה תופס להיכן אני נרדף-ט) |
|
||||
|
||||
1 מה התפלספות? מה שתארת נקרא בדרך כלל אלגברה בוליאנית והוא כלי שימושי לכל מיני דברים בלוגיקה: לצורכי הצרנה של "הייתי יכול להיות נמוך" לוגיקה מודאלית ניראת מתאימה יותר: |
|
||||
|
||||
זה בדיוק העניין: לא דיברתי על אלגברה בוליאנית 1. דיברתי על כך שיש שתי דרכי רישום לטענות לוגיות: האלגברה הבוליאנית ומודל שמשתמש בקבוצות. כל טענה שניתן לנסח באלגברה בוליאנית אפשר לתרגם לטענה על מודל הקבוצות, אך לא להיפך. בכל אופן, תודה על הקישורים. לא הכרתי עד עכשיו את הלוגיקה המודאלית. 1 כלומר, דיברתי, אבל לא זה היה העניין. |
|
||||
|
||||
עכשיו אני לא בטוח שהבנתי אותך. אלגברה בוליאנית זה לא רק ''אמת'' ו''שקר'', אלא משהו כללי יותר שכולל את מודל הקבוצות שתארת (אם הבנתי אותו נכון). את הטענה השניה אני מנסח בתור ''לא כל האלגבראות הבוליאניות שקולות (לגבי טענות מסדר שני)''. |
|
||||
|
||||
צודק. קראתי שוב את הפסקה הרלוונטית בערך בויקיפדיה, וגיליתי שדיברתי, בלי לדעת, על אלגברה בוליאנית. אני כנראה גאון שמאחר את זמנו :-) . |
|
||||
|
||||
אם כבר מדברים על זה, אז שים לב שאלגברה בוליאנית היא משהו כללי יותר מאשר קבוצת כל תתי-הקבוצות של קבוצה נתונה עם חיתוך ומשלים. למעשה, זה שקול למשפחה של תתי-קבוצות כאלו, הסגורה לחיתוך ומשלים. בעזרת המקרים שלא טריוויאליים האלו בונים כפיות1. 1 אם כי אני מעדיף את הגישה של kunen, שעובדת עם סתם יחסי סדר. |
|
||||
|
||||
(כפיות זה forcings ולא tea spoons) |
|
||||
|
||||
אתה ואלון, party poopers תגובה 320231. |
|
||||
|
||||
"א. גדי הגדיר את הקבוצה A כ-{A}. גם ההגדרה שלך לקבוצה (אחרת) A כ-{A,{}}. טובה באותה מידה. אז מה אתה רוצה?" האם {N} היא "קבוצה שהיא האיבר של N (עצמה)"? |
|
||||
|
||||
אי אפשר לענות לשאלה הזו כי לא הגדרת את N. אם N היא קבוצת המספרים הטבעיים (האות N בד"כ משמשת לסימון הזה) אז {N} היא קבוצה שהאיבר שלה הוא קבוצת המספרים הטבעיים, ולכן היא אינה איבר של N כי אינה מספר טבעי. |
|
||||
|
||||
"אי אפשר לענות לשאלה הזו כי לא הגדרת את N." השתמשתי בכוונה ב-N כדי להראות שהתבנית הכללית כביכול שספקת אינה מדגימה קבוצה שהיא איבר של עצמה במקרה זה: {N}={{1,2,3,...}}
|
|
||||
|
||||
"האם {N} היא "קבוצה שהיא האיבר של N (עצמה)"?" מה שאני אומר הוא שכדי שקבוצה תהיה איבר של עצמה צריך בפירוש להגדיר את זה ע"י הביטוי: N={N} אבל אז אנו מקבלים קבוצה כגון ...{{{N}}}... אשר איננה ניתנת מוגדרת סופית.
|
|
||||
|
||||
כמו שכתבתי קודם, אני מסכים איתך: לדעתי יש בעייתיות רבה בקבוצה שמוגדרת כך ואני אישית, אולי מפאת חוסר נסיוני במתמטיקה, לא רואה שום סיבה לעבוד עם אף קבוצה שמוגדרת בצורה כזו. |
|
||||
|
||||
"כמו שכתבתי קודם, אני מסכים איתך:" אם אתה מסכים איתי, אז אתה גם צריך להסכים שלא צריך את סייגי ZF כי היות וקבוצה שהיא איבר של עצמה איננה אלא רקורסיה אינסופית, לא ניתן לשאול כלל האם קבוצת *כל* הקבוצות שאינן איבר של עצמן היא איבר של עצמה, כי אז אנו מקבלים מצב של רקורסיה אינסופית אשר אינה נותנת לנו להגדיר ריגורוזית את קבוצת *כל* הקבוצות שאינן איבר את עצמן. לכן אנו נמנעים מהכלת הקבוצה הנ"ל כאיבר של עצמה, אבל אז אנו סותרים את התנאי *כל*, ולכן קבוצת *כל* הקבוצות שאינן איבר של עצמן אינה קיימת מלכתחילה, והפרדוקס של ראסל לא קיים ולא צריך למנוע אותו בעזרת אקסיומות מיוחדות, כמו שנעשה לדוגמא ב-ZF. מה דעתך? |
|
||||
|
||||
אני לא מסכים איתך, מכיוון שאני לא חושב שלהגיד על משהו שהוא "רקורסיה אינסופית" זה מספיק כדי להגיד שהוא בלתי אפשרי. בשביל זה צריך נימוק מתמטי משכנע (או פשוט להחליט על זה בתור אקסיומה). אני מסכים שקבוצה שהיא "רקורסיה אינסופית" נראית מאוד משונה. מצד שני, גם מרחב טופולוגי שאינו האוסדורף נראה לי מאוד משונה, אז זו לא תחושת בטן שאני יכול להסתמך עליה. למעשה, ככל הידוע לי בתורת הקבוצות הנאיבית אין הגדרה ריגורוזית של קבוצות. מסתכלים על קבוצות בתור משהו שמכיל אוסף של אובייקטים העונה על תכונות מסויימות, וזהו. רק ב-ZF מנסים להגדיר את הכללים הבסיסיים שמהם ניתן לבנות קבוצה - וכל עוד לא אוסרים ישירות (או בצורה עקיפה, כפי שהבנתי שעושים ב-ZF) על כך שקבוצה תהיה איבר של עצמה, אין סיבה שזה לא יהיה כך אלא אם תוכל להצביע על סתירה שנגרמת כתוצאה מכך. הפרדוקס של ראסל הוא סתירה שנגרמת לקבוצה מסויימת, אבל כלל לא בטוח שהפרדוקסליות שלו נובעת מכך שניתן לדבר על קבוצות שהן איבר של עצמן, ולא שאנחנו מדברים על קבוצה שהתנאי המגדיר אותה "תופס" אוסף גדול כל כך של איברים שלא ניתן לקרוא לו "קבוצה" - כלומר, לא ניתן לצפות שהוא עצמו יהיה איבר באוספים אחרים. |
|
||||
|
||||
''אני לא מסכים איתך, מכיוון שאני לא חושב שלהגיד על משהו שהוא ''רקורסיה אינסופית'' זה מספיק כדי להגיד שהוא בלתי אפשרי.'' לא אמרתי בלתי אפשרי אלא ''לא מוגדר סופית'' |
|
||||
|
||||
לא יודע מה זה "מוגדר סופית". בכל מקרה, אם זה לא בלתי אפשרי, מה הבעיה? |
|
||||
|
||||
הבעיה היא חוסר העיקביות של ZF בטיפול האינסוף, לדוגמא: ציטוט: Axiom of regularity (Axiom of foundation) implies that no set is an element of itself זאת אומרת שלפי ZF לא יכולה להתקיים ...{{{N}}}...Let A be a set such that A is an element of itself and define B = {A}, which is a set by the axiom of pairing. Applying the axiom of regularity to B, we see that the only element of B, namely, A, must be disjoint from B. But the intersection of A and B is just A. Thus B does not satisfy the axiom of regularity and we have a contradiction, proving that A cannot exist. אך לפי אקסיומת האינסוף: If n us in N then n+1 is in N ואנו מקבלים קבוצה שאיבריה הם ב-Bijection עם רמות הרקורסיה של ...{{{N}}}... ולכן ...{{{N}}}... שקול ל-N הבנוי "לגובה".מכאן שיש חוסר עיקביות בין הגדרת N לאיסור קיום ...{{{N}}}... |
|
||||
|
||||
או.קיי, N שקולה לקבוצת "רמות הריקורסיה" (מושג בעייתי מאוד לכשעצמו 1) של קבוצה-שהיא-האיבר-היחיד-של-עצמה 2. איפה אתה רואה חוסר עקביות? 1 רמות הריקורסיה לא עוסקות באובייקטים שונים, אלא בדרכים שונות להציג את אותו אובייקט. כדי "למנות" את רמות הריקורסיה יש לעשות טריק דמוי-גדל, לבנות בתוך המערכת "מערכת בת" זהה לה, ו"למנות" את מספר הדרכים לייצג בה את הקבוצה, תוך שימוש ב-"{", "}", ו-"N" בלבד (מה שעוד יותר בעייתי, כי אין "מילה" כזאת N בשפה של המערכת). כשמציגים את זה ככה, זו לא נראית קבוצה מלאת חשיבות, נכון? 2 אגב, האם קינון טרנספיניטי נחשב? כי אם כן, הטענה איננה נכונה. אם עובדים על פי השיטה בהערה 1, אז קינון טרנספיניטי לא נחשב. |
|
||||
|
||||
" איפה אתה רואה חוסר עקביות?" הגדרת N ל"אורך" ואיסור ...{{{N}}}... ל"גובה" אגב אינך צריך את N לצורך זה וניתן למצוא את אותה שקילות בין N ל- ...{{{}}}... |
|
||||
|
||||
תיקון: אגב אינך צריך את ...{{{N}}}... לצורך זה וניתן למצוא את אותה שקילות בין N ל- ...{{{}}}... "כשמציגים את זה ככה, זו לא נראית קבוצה מלאת חשיבות, נכון?" אודה לך אם לא תתבל את תגובותיך בתוכן לא רלוונטי. |
|
||||
|
||||
<הערה עוקצנית> הייתי מבקש ממך אותו דבר, אבל חברי המערכת שונאים שמציפים את האתר בתגובות ריקות. <\\הערה עוקצנית> מה שאמרתי רלוונטי מאוד, ואיננו תבלין כלל וכלל. בהינתן קבוצה A שהיא היחידה ששייכת לעצמה, עוצמת הקבוצה { A, {A}, {{A}}, {{{A}}}, {{{{A}}}}... } היא בדיוק 1!לכן, אתה לא יכול לטעון לשקילות בין הקבוצה הזאת לקבוצת הטבעיים. אתה, לעומת זאת, עוסק בקבוצת רמות הקינון, שהיא הקבוצה: { "A", "{A}", "{{A}}", "{{{A}}}", "{{{{A}}}}"... } זו קבוצת *דרכי הרישום* של A. למעשה, זו קבוצת דרכי הרישום של A שעונה על אילוצים מסוימים.וכן, זאת לא נראית קבוצה מעניינת. (מצד שני, אסור לסמוך על התחושות שלי יותר מדי.) |
|
||||
|
||||
"מה שאמרתי רלוונטי מאוד, ואיננו תבלין כלל וכלל. בהינתן קבוצה A שהיא היחידה ששייכת לעצמה, עוצמת הקבוצה { A, {A}, {{A}}, {{{A}}}, {{{{A}}}}... } היא בדיוק 1!"הכיצד? הריי: 1 <--> A
2 <--> {A} 3 <--> {{A}} ... |
|
||||
|
||||
את הטענה "A היא היחידה ששייכת לעצמה" ניתן לבטא כך: A={A} ולכן:A={{A}} וכל האיברים של אותה קבוצהA={{{A}}} A={{{{A}}}} { A, {A}, {{A}}, {{{A}}}, {{{{A}}}}... } למעשה שווים. לכן עוצמתה 1.לעומת זאת, קבוצת רמות הקינון של הקבוצה, היא בסה"כ קבוצה של דרכים מסוימות לסימון הקבוצה A. |
|
||||
|
||||
האם נובע בכך ש: a={a} במסגרת ZF?אם כך הדבר, האם: {a,b,c,…} = {{a},{b},{c},…} ?
|
|
||||
|
||||
לא עבור *כל* x מתקיים x={x} . דיברנו על קבוצה *מסוימת* שהגדרנו כך שהיא תקיים את התנאי הזה. גם לגביה יש בינינו הסכמה שההגדרה הזאת לא תקינה.
|
|
||||
|
||||
לא הגדרתי איסור {{{N}}}. רק אמרתי שלא מתקיים N={N} למשל, כי N אינסופית בעוד {N} סופית מאוד (כאשר N היא קבוצת הטבעיים).אני לא רואה שום בעיתיות בסדרה {},{{}},{{{}}},{{{{}}}}... אלא אם כן בא מישהו וטוען שכל האיברים בה שווים. אין לי מושג מהן הגדרות "לאורך" ו"לגובה". אני לא מבין איך שקילות סותרת את ה-Axiom of Foundation. |
|
||||
|
||||
אני לא מבין על מה אתה מדבר. ראשית, חשבתי שהסכמנו כבר שלא מתעסקים יותר בקבוצות "רקורסיביות אינסופיות", ואם אתה אומר שגם ZF לא מתעסקת איתן, מה טוב. אבל עכשיו, למה אתה מערב את הקבוצה המסכנה N בכך? עד כמה שידוע לי היא לא קבוצה רקורסיבית שכזו. היא בהחלט לא איבר של עצמה - קבוצת המספרים הטבעיים אינה מספר טבעי, תקן אותי אם אני טועה. בצורה מדוייקת יותר אפשר לומר שהמספר הטבעי k הוא מהצורה {{{...}}} - k זוגות סוגריים, ואילו N היא אוסף של כל האיברים הללו, ולכן היא לא מורכבת בעצמה רק מאוסף של זוגות סוגריים (כי למשל היא מכילה גם את {} וגם את {{}}) ולכן אינה איבר של עצמה. לכן אין איתה בעיה של "רקורסיביות אינסופית". הדבר היחיד שאולי מטריד בה זה שיש בה אינסוף איברים שכל אחד מהם מתקבל מהקודם על ידי הוספת סוגריים ("1+"). לי זה לא כל כך מפריע. אם לך זה מפריע, זה כבר עניין של טעם ואתה מוזמן להציג את מערכת האקסיומות שלך ולנסות לשכנע אותנו שהיא עדיפה (לא נראה לי שזה יקרה) אבל אי אפשר להגיד שיש חוסר עקביות ב-ZF. |
|
||||
|
||||
"אבל אי אפשר להגיד שיש חוסר עקביות ב-ZF." בוא ונבחן את הטענה לגבי שתיי אקסיומות: א) Axiom of regularity (or axiom of foundation): Every non-empty set x contains some element y such that x and y are disjoint sets. ב) Axiom of power set: Every set has a power set. That is, for any set x there exists a set y, such that the elements of y are precisely the subsets of x. {{}} הינו איבר של: P(N) {{{}}} הינו איבר של:P(P(N)) {{{{}}}} הינו איבר של:P(P(P(N))) ולכן קיימת קבוצה... {{},{{}},{{{}}},...} שניתנת לחד-חד ועל עם N: 1 <--> {} בקיצור (ב) מגדירה את מה ש-(א) אוסרת, ותוצר (ב) שקול ל-N.
2 <--> {{}} 3 <--> {{{}}} ... |
|
||||
|
||||
לא הבנתי איך נסתר א'. אני גם לא בטוח מה אתה בדיוק מגדיר בתור N, אבל אני משער שהכוונה לקבוצה {{},{{}},{{{}}},...}. |
|
||||
|
||||
N שהצגת היא *לא* איחוד של N, P(N), P(P(N)), P(P(P(N)))... למה? כי קיימת קבוצה {{},{{}}} שהיא איבר של הקבוצה P(N), ואיננה איבר של N.לקבוצה N שייכים איבר כלשהו של N, איבר כלשהו של P(N), איבר כלשהו של P(P(N)) וכו'. זה לא סותר את א' בשום צורה. |
|
||||
|
||||
"זה לא סותר את א' בשום צורה." חביבי התוצאה קובעת בשיטה הפורמלית ולא הדרך אל התוצאה, ולכן מה שאוסרת (א) מייצרת (ב). קרא לזה "*לא* איחוד של N" או איזה שם אחר שתבחר לתוצר (ב), אבל זה לא ישנה כהוא זה את העובדה שמה שאוסרת (א) מתקיים ע"י (ב), והמבחן הוא מבחן התוצאה ולא שום דבר אחר בשיטה פורמלית. |
|
||||
|
||||
אני לא יודע על איזו "דרך אל התוצאה" אתה מדבר. התוצאה שאליה הגעת לא סותרת את א'. אתה רק הראית שקיימת קבוצה N, שיש לה איבר מכל קבוצת חזקה-של-חזקה-של-חזקה שלה. |
|
||||
|
||||
"אתה רק הראית שקיימת קבוצה N, שיש לה איבר מכל קבוצת חזקה-של-חזקה-של-חזקה שלה." הראיתי כיצד (ב) מאפשרת את מה ש-(א) אוסרת. בקיצור: …P(P(P(N))) --> …{{{N}}}…
|
|
||||
|
||||
*אם* ניתן להגיע לאינסוף P (קבוצת החזקה האומגה של N), *אז* ניתן להגיע לקינון אינסופי. ה"אם" הזה הוא "אם" גדול מאוד (ונדמה לי שדנו בו כבר פעם ב"אייל"). |
|
||||
|
||||
"ה"אם" הזה הוא "אם" גדול מאוד " כל מה שנדרש הוא להבין שקינון אינסופי שקול ל- חד-חד ועל עם N, והראתי זאת בבירור בתגובה 331947 |
|
||||
|
||||
קינון אינסופי כזה מכיל איבר יחיד (את עצמו). הוא לא שקול ל-N. כמו כן, לא קיימת פונקציה חד-חד ערכית מקבוצת החזקה האינסופית של N על N. קיימת רק פונקציה חד-חד ערכית (שאינה על) מ-N ל-קבוצת החזקה האינסופית של N. |
|
||||
|
||||
"קינון אינסופי כזה מכיל איבר יחיד (את עצמו). הוא לא שקול ל-N." זה בערך כמו שתגיד לא ש ...0.999 לא שקול ל-0.9 + 0.09 + 0.009 + … |
|
||||
|
||||
אני לא רואה את הקשר. בכל אופן: עוצמת N היא א_0. עוצמת {N} היא 1. עוצמת {{N}} היא 1. עוצמת {{{N}}} היא 1. עוצמת {{{{N}}}} היא 1. ... לא חשוב כמה פעמים תחזור על התהליך. עוצמת הקבוצה שתקבל היא 1. |
|
||||
|
||||
"לא חשוב כמה פעמים תחזור על התהליך. עוצמת הקבוצה שתקבל היא 1." כפי שאמרתי, אני טוען לזהות בין 0.9 + 0.09 + 0.009 + … ל-...0.999 ולכן קיים חד-חד ועל, כפי שניתן לראות בתגובה 331947 כמו כן הגב נא לתגובה 332000 |
|
||||
|
||||
"אני טוען לזהות בין 0.9 + 0.09 + 0.009 + … ל-...0.999" - גם אני מסכים לזהות הזאת. היא לא קשורה בשום צורה לנושא שבו אנחנו עוסקים, אבל היא נכונה. "ולכן" - מה הקשר? "קיים חד-חד ועל" - אין לי מושג מה אומרת הטענה הזאת. לו היית אומר "קיימת *התאמה* חד-חד *ערכית* ועל *מקבוצה A לקבוצה B*" הייתי מבין אולי על מה אתה מדבר. כדאי שתבהיר *בין איזה קבוצות* יש לטענתך התאמה כזאת, ומה המשמעות של זה. "כפי שניתן לראות בתגובה 331947" - התגובה הזאת מראה רק שקיימת קבוצה N, שמכילה איבר אחד מכל "רמת חזקה" שלה. "כמו כן הגב נא לתגובה 332000" - הגבתי. |
|
||||
|
||||
""אני טוען לזהות בין 0.9 + 0.09 + 0.009 + … ל-...0.999" - גם אני מסכים לזהות הזאת. היא לא קשורה בשום צורה לנושא שבו אנחנו עוסקים, אבל היא נכונה. ועוד איך היא קשורה, כי אם אתה מסכים לנ"ל, אז אתה חייב להסכים לשקילות בין ...{{{}}}... (המקביל ל-...0.999) לבין {},{{}},{{{}}},{{{{}}}}... (המקביל ל-0.9 + 0.09 + 0.009 + …) "קיים חד-חד ועל" - אין לי מושג מה אומרת הטענה הזאת. לו היית אומר "קיימת *התאמה* חד-חד *ערכית* ועל *מקבוצה A לקבוצה B*" הייתי מבין אולי על מה אתה מדבר. כדאי שתבהיר *בין איזה קבוצות* יש לטענתך התאמה כזאת, ומה המשמעות של זה". 1 <--> {} <--> 0.9
2 <--> {{}} <--> 0.09 3 <--> {{{}}} <--> 0.009 ... |
|
||||
|
||||
אין דמיון בין שני הדברים. בוא אני אנסה לתת לך דוגמה שאולי תבהיר את זה. ידוע ש 0.9+0.09+0.009...=0.999... אם כך, תסכים גם ש: 0.1*0.11*0.111*0.1111...=0.11111... האם אתה רואה איפה ההבדל? |
|
||||
|
||||
אני אסביר יותר במדויק איפה ההבדל. במקרה המספרי מתקיים: 0.9 = 0.9 a ולכן נהוג לסמן:0.99 = 0.9 + 0.09 0.999 = 0.9 + 0.09 + 0.009 0.9999 = 0.9 + 0.09 + 0.009 + 0.0009 ... a 0.9999... = 0.9 + 0.09 + 0.009 + 0.0009... a עם זאת כאשר מדובר בקבוצות:{} != {{}} a כך שאין שום סיבה להסיק:{{}} != {{},{{}}} {{{}}} != {{},{{}},{{{}}}} {{{{}}}} != {{},{{}},{{{}}},{{{{}}}}} ...{{{}}}... = {{},{{}},{{{}}},{{{{}}}},{{{{{}}}}}...} a (נא להתעלם מסימני ה-"a", שכל מטרתם ליישר את הטקסט לשמאל)
|
|
||||
|
||||
בדוק אם סימן יוניקוד U+202A (Left-to-Right Embedding) יכול לשמש אותך מבלי להיראות לעין. |
|
||||
|
||||
בדקתי, והוא לא מיישר את השורה. תודה בכל מקרה. אגב, לא רחוק ממנו מצאתי בטבלת היוניקוד את הסימן הבא: ⌐ שמוגדר כ-"Reversed Not Sign". מישהו מכיר משמעות מקובלת שלו? |
|
||||
|
||||
סימן מאותו איזור שישמש כאות "אנגלית" בלתי־נראית הוא LRM: Left Right Mark. קידודו הוא U+200E. בתגובה הזו השתמשתי בבן־זוגו: RLM, שקידודו הוא U+200F. |
|
||||
|
||||
כשמנסים להיכנס למאמר כדי לקרוא אותו, זה תוקע את המחשב משום מה, איך אפשר לקרוא את המאמר על כל תגובותיו? |
|
||||
|
||||
אם הבעיה היא במאמר הספציפי הזה, הבעיה היא כנראה שיש יותר מדי תגובות שצריכות להטען. אולי כדאי לפתוח את המאמר עם תגובות מכווצות, ולקרוא פתיל-ראשי אחר פתיל-ראשי. |
|
||||
|
||||
שגיאתך הינה פשוטה בתכלית, כי אינך יכול לתאר את: 0.9999... = 0.9 + 0.09 + 0.009 + 0.0009... a או: ...{{{}}}... = {{},{{}},{{{}}},{{{{}}}},{{{{{}}}}}...} a כאוסף השוואות בין מקרים פרטיים סופיים, אלא אתה חייב להתייחס ישירות לאינסופיות שלהם, ואז ורק אז על בסיס האינסופיות, אתה יכול להסיק מסקנות רלוונטיות לגבי היחסים ביניהם.(נא להתעלם מסימני ה-"a", שכל מטרתם ליישר את הטקסט לשמאל) |
|
||||
|
||||
אבל בוא נאמר שאנו מסכימים כי ניתן לתאר את הנ"ל כאוסף השוואות בין מקרים פרטיים, אך אז הקרדינל של אגף שמאל של הקבוצות נקבע לא לפי התוכן אלא לפי קיום האלמנט המקונן, ואילו הקרדינל של אגף ימין של המשוואה נקבע ע"י הפירוק לרמות הקינון, כאשר פירוק זה משמש כאיבריה של קבוצה ולכן: {} = {{}} = 1 a (נא להתעלם מסימני ה-"a", שכל מטרתם ליישר את הטקסט לשמאל)
{{}} = {{},{{}}} = 2 a {{{}}} = {{},{{}},{{{}}}} = 3 a {{{{}}}} = {{},{{}},{{{}}},{{{{}}}}} = 4 a ... |
|
||||
|
||||
קודם כל, שים לב שהפכת את סימני ה-"!=" שלי ("לא-שווה") לסימני שיוויון, ובכך גם קיבלת משוואות שגויות כמו {} = {{}}. דבר שני, אתה לא יכול להגדיר קרדינל לצד הימני במשוואה וקרדינל לצד השמאלי במשוואה באופן שונה. לסיום, אנא שים לב שיש בינינו הסכמה על כך שקבוצת האגפים-הימניים וקבוצת האגפים-השמאליים בסדרת המשוואות הזאת שקולות. הטענה אותה העלית בתגובות אחרות היא שה"גבול" של סדרת האגפים השמאליים שקול לגבול של סדרת האגפים הימניים. זו לא אותה טענה. |
|
||||
|
||||
יותר מכך, בוא נלך עוד צעד לקראת ונאמר שאנו עוסקים בהשוואה בין תוכן האלמנט המקונן (אגף שמאל של המשוואה) , ופירוק התוכן לאיברים מובחנים של קבוצה נתונה (אגף ימין של המשוואה): |{}| = |{}| = 0 a וכפי שאתה רואה, יש שיוויון בין קרדינל רמות הקינון, לקרדינל קבוצת מצבי הקינון השונים.|{{}}| = |{ {} }| = 1 a |{{{}}}| = |{ {},{{}} } = 2 a |{{{{}}}}| = { {},{{}},{{{}}} } = 3 a ... (נא להתעלם מסימני ה-"a", שכל מטרתם ליישר את הטקסט לשמאל) |
|
||||
|
||||
קודם כל, קרא את תגובה 332286. חוץ מזה, קיים פה "שיוויון" רק כי אתה מגדיר קרדינל באופן שונה עבור כל אגף של המשוואה. חוכמה גדולה. אני גם יכול לחשוב על הגדרה שתאחד את הפעולות שאתה מבצע על שני צידי המשוואה 1, אך היא לא קשורה בשום צורה למובן הסטנדרטי של "עוצמה". לכן כדאי לבחור עבורה שם אחר, לדוגמה: "רמת קינון". 1 רמת קינון: עבור הקבוצה הריקה רמת הקינון מוגדרת כ-0, עבור כל קבוצה אחרת, רמת הקינון מוגדרת כרמת הקינון המקסימלית של איבר הקבוצה, ועוד 1. אם אין מקסימום, אז כאינסוף. אם קיים בקבוצה איבר שרמת הקינון שלו אינסוף, גם רמת הקינון של הקבוצה תהיה אינסוף. |
|
||||
|
||||
"חוץ מזה, קיים פה "שיוויון" רק כי אתה מגדיר קרדינל באופן שונה עבור כל אגף של המשוואה. חוכמה גדולה." אם כך אינך מבין כי רמות הקינון ופירוקן לאברי קבוצה מובחנים, חד-הם. לדוגמא: אם |{{{{}}}}| = |{{}}| = 1 לשיטתך, הריי שהתעלמת מרמות הקינון והתייחסת רק לכמות האלמנטים הלא-מקוננים הקיימים בקבוצה. אבל בכך אתה מונע כל אפשרות להדגים את ההשוואה בין קבוצת רמות קינון (שאינה קיימת ב- ZF בגלל אקסיומת היסוד) לקבוצה ב-ZF המתקיימת כאוסף של דרגות הכינון השונות. אם אתה נוקט בדרך זו, הרי שאינך עוסק בחקירת מושג האיסוף בקינון אינסופי ובאוסף מובחן אינסופי, ומרוקן את הדיון מתוכנו. |
|
||||
|
||||
אני לא מתעלם מההבדל בין {{{{}}}} ל-{{}}. הוא פשוט לא בא לידי ביטוי במושג העוצמה. למיטב ידיעתי, קבוצת רמות הקינון קיימת גם קיימת (ואף ניתנת לבנייה) ב-ZF. בכל אופן, אינני רואה כיצד היא מתנגשת עם אקסיומת היסוד. "אינך עוסק בחקירת מושג האיסוף בקינון אינסופי ובאוסף מובחן אינסופי" הגעת למסקנה הזאת כי אני לא מסכים לקרוא "עוצמה" למשהו שאינו עוצמה. |
|
||||
|
||||
"אני לא מתעלם מההבדל בין {{{{}}}} ל-{{}}. הוא פשוט לא בא לידי ביטוי במושג העוצמה." בוודאי שלא, אך משום מה אתה בחרת לעשות השוואה בין אלנמטים אינסופיים ע"י השוואת היחסים בין מצבים סופיים של אלמנטים אלה, אז תבוא בטענות לעצמך, כי אני טוען שאינך יכול להסיק דבר מדרך חקירה זו על אלמנטים אינסופיים כפי שכתבתי בתגובה 332269 "למיטב ידיעתי, קבוצת רמות הקינון קיימת גם קיימת (ואף ניתנת לבנייה) ב-ZF." ...{{{}}}... איננה קבוצת רמות-קינון אלא רמות-קינון אינסופיות אשר לא ניתן להגדירן (פשוטו כמשמעו משורש ג.ד.ר), והן נמנעות ע"י אקסיומת-היסוד. מטרתי היא להראות כי יש שקילות אי-אפשרות ההגדרה של ...{{{}}}... ואי-אפשרות ההגדרה של קבוצת רמות-הקינון, השקולה לקבוצת המספרים הטבעיים N. הינה דברי שוב כאשר הלכתי לקראתך והראתי שאפילו אם ננקוט בדרך החקירה שלך (שאיני מסכים איתה) ונחקור אלמנטים אינסופיים ע"י שימוש באלמנטים סופיים, עדיין נקבל שקילות בין רמת קינון סופית כלשהיא לבין קבוצת רמות-הקינון שלה, לדוגמא: אנו עוסקים בהשוואה בין תוכן האלמנט המקונן (אגף שמאל של המשוואה) , ופירוק התוכן לאיברים מובחנים של קבוצה נתונה (אגף ימין של המשוואה): |{}| = |{}| = 0 a וכפי שאתה רואה, יש שיוויון בין קרדינל רמות הקינון, לקרדינל קבוצת מצבי הקינון השונים (מה שאתה קורא לו קבוצת רמות-הקינון) .|{{}}| = |{ {} }| = 1 a |{{{}}}| = |{ {},{{}} } = 2 a |{{{{}}}}| = { {},{{}},{{{}}} } = 3 a ... טענתי הי פשוטה בתכלית והיא: רמות הקינון, ופירוקן לאברי קבוצה מובחנים (מה שאתה קורא לו קבוצת רמות-הקינון) , חד-הם. האחד "הולך לעומק" (רמות הקינון) והשני "הולך לאורך" (קבוצת רמות-הקינון). לכן: ...{{{}}}... = {{},{{}},{{{}}},{{{{}}}},{{{{{}}}}}...} a (נא להתעלם מסימני ה-"a", שכל מטרתם ליישר את הטקסט לשמאל)
|
|
||||
|
||||
בהמשך לתגובה 332366 היות ו: ...{{{}}}... = {{},{{}},{{{}}},{{{{}}}},{{{{{}}}}}...} a ו:N = {{},{{}},{{{}}},{{{{}}}},{{{{{}}}}}...} a אז:...{{{}}}... = N וההסבר המפורט נמצא בתגובה 332188 (ואתה לא הסברת דבר בתגובה 332253)
|
|
||||
|
||||
|
||||
|
||||
תודה עוזי, כיצד אסמן "שקול" מבלי לכתוב את המילה? |
|
||||
|
||||
אני מציע את הסימן "~". |
|
||||
|
||||
אני ממליץ שלפני שאתה מתחיל לאמץ קיצורי דרך, תסביר באופן מדוייק מאד למה כוונתך ב"שקול". 1. האם הכוונה היא ששני דברים יכולים להיות שקולים זה לזה, או שאולי מדובר בתכונה שיכולה לחול על אובייקט בודד או על יותר משניים? 2. אילו זוגות של דברים יכולים להיות שקולים זה לזה? 3. מתי שני דברים הם שקולים? (לדוגמא: שני1 מספרים טבעיים2 הם 'שקולים מבחינת הגודל שלהם'3 אם הם שווים4 או שסכומם אפס5.) 1 זו תשובה לשאלה הראשונה 2 זו תשובה לשאלה השניה 3 כאן בא שמו של היחס שאני מגדיר; לפעמים רוצים לחשוב על יותר מיחס שקילות אחד, ולכן לקרוא לכולם "שקול" עשוי לבלבל 4 כאן אני משתמש ביחס שקילות מוקדם 'שוויון', מתוך הנחה שכולם יודעים מתי שני מספרים טבעיים שווים זה לזה 5 זה סוף התשובה לשאלה השלישית |
|
||||
|
||||
כוונתי ב- N ~ ...{{{}}}... היא שהקרדינל המדוייק שלהם לא-קיים. |
|
||||
|
||||
שים לב שבבואך להסביר את המשמעות שבחרת לסימן ~, התעלמת מכל שלושת השלבים שהצעתי לעניינים כאלה. (אלא אם כוונתך היא ש*שתי* *קבוצות* הן שקולות אם ורק אם *לשתיהן אין קרדינל מדוייק*, ואז אני חושב שזה שימוש קצת מוזר במונח 'שקולות'. האם היית אומר ששני פירות הם "שקולים" אם ורק אם שניהם ירוקים, או שאולי במקרה כזה עדיף לקרוא לכל אחד מהם בנפרד "פרי ירוק"?) |
|
||||
|
||||
תלוי לאיזה צורך, לא? לצורך הכנת "סלט חמשת הצבעים" פלפל ירוק ומלפפון באמת שקולים (ואני לא מתכוון לעובדה שהקופאית שקלה אותם). |
|
||||
|
||||
לצורך הכנת סלט צבעוני, אתה יכול להגדיר "*שני* *ירקות* הם שקולים אם הם *בעלי אותו צבע*". אין שום טעם להגיד שהם שקולים אם הם בעלי אותו צבע, שהוא ירוק. זה לא יחסוך שום זמן בחיפוש המרכיבים לסלט (תן לי בבקשה משהו אדום; עכשיו משהו סגול, לא חשוב מה; וכתום, כן - זה די כתום בעיני; משהו לבן - יופי; ועכשיו תן לי איזשהו ירק ששקול למשהו אחר" ("שקול למשהו אחר" זו הדרך שלך לבקש צבע ירוק, ואתה עלול להיות בבעיה אם בכל החנות יש רק דבר ירוק אחד. אולי עדיף לבקש "ירק ששקול לעצמו", אלא שאז אתה עלול להכנס לדיון אימתני עם הירקן בסוגיות של יסודות המתמטיקה). |
|
||||
|
||||
|
||||
|
||||
אנא עיין ב-http://www.createforum.com/phpbb/viewtopic.php?t=45&... כדי להבין כיצד אני מבין ומגדיר את המושג "אוסף אינסופי". תודה |
|
||||
|
||||
"I know that my approach cannot be grasped easily by persons which are familiar with the standard approach about the successor concept, but at the moment you get it you can see that it is finer than the standard understanding of the successor concept." אגב, אותי איבדת ב-"we need to define {} as the successor of itself". למה אנחנו צריכים להגדיר את הקבוצה הריקה כעוקב של עצמה? באקסיומות פאנו דווקא בוחרים להדגיש ש-0 הוא מספר שאינו עוקב של אף מספר אחר (ולכן בטח שלא צריך לדרוש שהוא יהיה העוקב של עצמו או משהו דומה).
"Don't worry about it. You will get it. It takes time to sink in" |
|
||||
|
||||
"באקסיומות פאנו דווקא בוחרים להדגיש ש-0 הוא מספר שאינו עוקב של אף מספר אחר (ולכן בטח שלא צריך לדרוש שהוא יהיה העוקב של עצמו או משהו דומה)." {} איננו 0 אלא |{}| = 0 , ולכן אין שום קשר בין אקסיומות פיאנו (אשר, דרך אגב, מבוססות על תבנית חשיבה סדרתית בלבד) לתובנות שלי ביחס לעוקב. אם אתה עוסק במושגים קבוצה ושייכות, הרי שהמינימום ההכרחי לקיום בפועל של קבוצה, היא לא פחות מאשר הקבוצה הריקה {}, ומושג השייכות הוא לא פחות מאשר {} המקונן ב-{} והמקיים את {{}} וכו'. |
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
לא יכולתם לדחות קצת את הדיון הזה? קצת אכזרי לנהל אותו בדיוק כשסביבי עולים ניחוחות של אוכל מדהים במיוחד, ואין לי מושג מנין הם ואני לא מוזמנת... |
|
||||
|
||||
בבקשה עוזי, הבמה לרשותך, הדגם נא לנו את המצב הפשוט ביותר האפשרי של מושג הקבוצה ומושג השייכות. |
|
||||
|
||||
תגובה 332642 |
|
||||
|
||||
|
||||
|
||||
אני מניח שאתה מתכוון לשקדי המרק. |
|
||||
|
||||
ומה רע בהתרבותם של שקדי המרק? |
|
||||
|
||||
אני לא יודע לדרג מצבים לפי פשטות, ובוודאי שלא להוכיח שמצב מסויים הוא כל-כך פשוט עד שאי-אפשר להיות פשוט יותר. בכל אופן, הקבוצה הריקה (שאפשר לסמן כ- {}) נראית לי דוגמא מוצלחת לקבוצה (אם כי אני לא בטוח שאני מבין למה הכוונה ב"מושג הקבוצה"). הקבוצה הריקה שייכת לקבוצה {{}}, ומצד שני לה בעצמה אין איברים בכלל. (חשבתי שהמטרה היתה לפענח את סימן השוויון מלפני כמה תגובות). |
|
||||
|
||||
בנושא זה, אני מבחין בין שתיי מערכות מושגים הופכיים: א)פשטות/מורכבות ב)פשטנות/מסובכות (א) היא היחס שכדאי לשאוף אליו והוא: פשטות מירבית המשמשת כמקור מכונן למורכבות מירבית, כאשר יחס הופכי זה הוא בר העצמה. יחס (ב) הוא הדבר שיש להמנע ממנו. |
|
||||
|
||||
לדעתי, "פשטני" היא מילה נרדפת ל"רדוד" או "שטחי", כלומר ההפך של "עמוק". "מסובכות" (?) נשמעת לי כמו מילה נרדפת ל"מורכבות". |
|
||||
|
||||
מסובכות הינה תוצר של אוסף פתרונות פשטניים, אשר אינם מקושרים זה לזה באופן אלגנטי. מורכבות הינה תוצר של אוסף פתרונות פשוטים המקושרים ביניהם באופן אלגנטי. |
|
||||
|
||||
יותר מכך, מורכבות הינה תוצר של אוסף פתרונות פשוטים, כאשר פתרון פשוט הוא המינימום ההכרחי לקיומו של פתרון. מינימום הכרחי נמדד עפ''י דרגת הסימטריה הפנימית המכוננת אותו, ולכן מערכת מורכת הינה ביטויי לשילובן של סימטריות שונות תוך שאיפה להגשמתה של סימטריה מכוננת המתקיימת בבסיסם. מערכות מסובכות אינן מכוננות סימטריה, ואינן שואפות לבטא פשטות אלגנטית הנובעת מקשרים סימטריים עמוקים. |
|
||||
|
||||
תודה על הדגמה מצוינת למושג ''מסובכות''. |
|
||||
|
||||
תודה לעצמך. |
|
||||
|
||||
עוזי תאר נא את אי-ידיעתך תוך התייחסות ל: "אם אתה עוסק במושגים קבוצה ושייכות, הרי שהמינימום ההכרחי לקיום בפועל של קבוצה, הוא לא פחות מאשר הקבוצה הריקה {}, ושייכות היא לא פחות מאשר {} המקוננת ב-{} והמקיימת את {{}} וכו'." אנא הסבר לנו את קשייך עם הנ"ל. תודה. |
|
||||
|
||||
אני לא בטוח שאני יודע לתאר את אי-ידיעתי. נדמה לי שזה קינון של אי ידיעה בתוך אי ידיעה, אבל מי יודע. אני מתרגם את הטענה במרכאות לטענה שאני מבין: "יש רק קבוצה אחת המוכלת בכל קבוצה אחרת, והיא הקבוצה הריקה. הקבוצה הלא-ריקה שסכום העוצמות של איבריה הוא הקטן ביותר, היא {{}}". אם יש לזה משמעויות פילוסופיות או אחרות, אני מפספס אותן לחלוטין. |
|
||||
|
||||
תודה לך עוזי על תשובתך. האם לדעתך יכולה להתקיים קבוצה אלמנטרית יותר מאשר הקבוצה-הריקה? |
|
||||
|
||||
הייתי יכול לענות לו הייתי יודע למה אתה מתכוון ב''אלמנטרי''. |
|
||||
|
||||
אלמנטרי: ישות יסודית, שאי-קיומה מונע את קיומם של אלמנטים המורכבים ממנה (תרתי משמע). אם {} לא קיימת, אז {{}} לא קיימת. לעומת זאת אם {{}} לא קיימת , {} קיימת. לכן {} הינה קבוצה אלמנטרית ואילו {{}} הינ קבוצה מורכבת. |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |