בתשובה לערן בילינסקי, 20/06/04 13:22
שיטות לניעור טרחנים 227201
לא הבנתי. טור טיילור זה לקירוב של פונקציה, לא? איך המחשבון יכול לדעת שבעזרתו ש2.414 (מכל המספרים) זה דווקא שורש ריבועי (מכל האופציות) של 2 (מכל המספרים), ואיך הוא שומר את המידע הזה?
שיטות לניעור טרחנים 227202
אני לא בטוח שכל שורש של שלם יחזור לעצמו, בכל אופן, נדמה לי שמחזיקים ב"סתר" עוד ספרה ( או אולי רק ביט) של דיוק, ובחזרה מעגלים. כלומר אם בהיפוך מתקבל 1.99Xמעגלים ל2 או 1.99 לפי הערך של X כאשר X הוא הספרה הנסתרת.
שיטות לניעור טרחנים 227300
לגבי הדיוק של מחשבון - כן, הדיוק גדול מהדיוק המוצג על המסך במעט (אני לא יודע בדיוק בכמה), ולכן לא לכל מספר אפשר להוציא שורש ואז לתקתק את מה שראית, להעלות בריבוע ולקבל את המספר המקורי.

לגבי שיטת הוצאת השורש - אני מכיר שיטה ל"הוצאת שורש ארוכה" בעזרת נייר ועיפרון (דומה לחילוק ארוך). אני לא יודע אם זה היישום במחשבונים (או אם היישום זהה בכל מחשבון), אבל השיטה פועלת כדלקמן:

קח את המספר שברצונך למצוא לו שורש וחלק אותו לזוגות ספרות. למשל, ניקח את 7619 - רשום 19|76. כעת מצא את הספרה הגדולה ביותר שריבועה קטן מ- 76 (8) והפחת את הריבוע מזוג הספרות שלך. רשום את התוצאה ו"הורד" את זוג הספרות הבא (כמו בחילוק ארוך). כעת מה שרשום זה 1219, ולמעלה רשום 8 (נקרא למה שרשום למעלה a). עכשיו צריך למצוא את הספרה הגדולה ביותר b כך ש-
b*(20a+b)<1219
כלומר, b=7. רושמים למעלה (כעת רשום שם 87), מפחיתים ומורידים עוד זוג ספרות וכו'.

במשפט אחד - השיטה מתבססת על הוספת ספרת דיוק b למספר a שכבר קיים, באופן ש- a^2+2ab+b^2 יהיה קטן מהמספר ששואפים להוציא לו שורש.
טרחנים כפייתיים ב-fx 82 227383
(לפסקה הראשונה שלך) במחשבונים מטיפוס casio FX82, היה אפילו כפתור שמעגל את המספר בזכרון המחשב לערך שכתוב על המסך!

ונדמה לי שבימי החולניים בתיכון יצא לי אפילו להשתמש בו פעם. ימי החולניים היו כאשר פיתחתי תחביב, להשתמש במגוון הכפתורים של המכשיר כדי לחשב ביטויים מסובכים (סינוס 32 כפול e בחזקת 3.5 חלקי שבע ועוד שורש טנגנס 50 וכולי - דברים ברוח זו הופיעו משום מה בתרגילים במתמטיקה ופיזיקה) בלי לרשום תוצאות ביניים על הדף. המחשבון איפשר, כמובן, שש רמות סוגריים, מה שמאפשר לעשות זאת ללא קושי אינטלקטואלי, אבל לא: סוגריים זה לנמושות! מי צריך סוגריים עם כפתורים מופלאים כמו אחד-חלקי-x, החלף x ב-y, ו(זה שקנה לי הערצת נצח של ידידי, למשך יומיים) החלף x ב-M!

העובדה שמי שרושם תוצאות ביניים על דף מפסיד משהו בדיוק שימשה רציונליזציה מועילה לאובססיה, וכמעט שכנעה את עצמי.

אה, אני נזכר למה הייתי צריך את הכפתור מהפסקה הראשונה. אם היתה דרישה חיצונית לרשום את תוצאות הביניים, יכולתי בעזרת הכפתור למנוע מ-injury זה את תוספת ה-insult של לתקתק מחדש את המספר (או להתסכן באפשרות הסבירה מאין כמוה שמישהו יבדוק אם התוצאה הסופית שלי עקבית עם תוצאות הביניים בספרה השמינית אחרי הנקודה).
התקבלת! 227385

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים