 |
אני לא בטוח שאני מצליח למצוא פרשנות מתאימה לשאלה. משוואה, כפי שציינת, מתארת שוויון בין שני אובייקטים (מספרים, פונקציות, או משהו אחר), ואלגוריתם הוא תיאור של תהליך מסודר לביצוע פעולות; אינני בטוח שיש מובן סביר לתהליך ההמרה של אלגוריתם למשוואה. משוואות לעיתים מתארות "שמורות" של מערכת פיסיקלית, וכשיש אלגוריתם אפשר לחפש את השמורות של המערכת ואם מוצאים מספיק כאלה אז אולי אפשר להחליף את האלגוריתם במשוואות, אבל זה לא בהכרח תמיד המצב.
זה שיש מתודולוגיות שונות לתאר תופעות זה נכון, אבל אני אישית לא מסכים עם וולפרם שיש פה איזה ויכוח עמוק. מסתכלים על העולם ומנסים למצוא לו תיאור מעניין או שימושי, ובמקרים רבים הכלים הנוחים לעשות זאת הם משוואות המתארות "חוקים" מסויימים, אך בהחלט לא תמיד. עקרון הפעולה המינימלית, למשל, הוא לא "משוואה", אלא עקרון המסביר כיצד מערכת פיסיקלית תבחר להתנהג. מתמטיקה היא לא רק משוואות, ופיסיקאים בשנים האחרונות מצאו עצמם (לשמחתם של חלק, לצערם של אחרים) משתמשים באובייקטים מתמטיים לא-צפויים עד מאוד.
הבדל אחד, לא מהותי אבל קיים מסורתית, בין תאורים אלגוריתמיים למשוואות הוא הפער בין הדיסקרטי לרציף. אלגוריתמים נוטים לפעול באופן דיסקרטי צעד אחר צעד, ומשוואות (נגיד דיפרנציאליות) נוטות לתאר אלמנטים רציפים בזמן רציף, אך אין בעייה לבנות משוואות גם למערכות דיסקרטיות.
פשטות ההצגה הוא באמת פרמטר שנראה, אינטואיטיבית, חשוב. אם תהייה תורה שלמה של העולם הבנוייה על שבעה כוחות, שש-עשרה משוואות שדה שונות, וחמישים פרמטרים שרירותיים (כמו מסת האלקטרון, המומנט המגנטי של המיואון, וכאלה), אני מניח שפיסיקאים ימשיכו לחפש אחר תורה שקולה מבחינת ניבויים אבל חסכונית יותר מבחינת נפח ההצגה. אין, כמובן, שום ערבות שהעולם בנוי על כללים פשוטים, אבל הדחף לחפש כאלה, דומני, טבוע בנו עוד מאז שהקדמונים ניסו לחלק את כל עולם החומר לאדמה, רוח, מים ואש.
כמות הביטים הדרושים כדי לנסח תאוריה (בתוך מודל נתון של חישוב) הוא בהחלט מדד סביר לסיבוכיות או לפשטות שלה. אינני בטוח שאני מבין למה הכוונה בהשפעה על "החישוביות הכללית"; ייתכנו כללים מסובכים ומסורבלים שקל מאוד לחשב בעזרתם את עתיד המערכת, וייתכנו כללים פשוטים מאוד שלא יאפשרו לעשות זאת בקלות. אני חושב שפשטות התיאור חשובה יותר מקלות החישוב.
מושג ה"יופי" הוא כמובן לא משהו שיש לו איזה ניסוח מתמטי, ונראה לי שאקונומיות גרידא אינה מספיקה כדי להפוך תאוריה מתמטית ליפה (ההגדרה של חבורה-למחצה יותר קצרה מההגדרה של חבורה, אך התורה המתמטית השנייה עשירה ויפה בהרבה).
אני לא יודע אם עזרתי, כל זה נראה לי קצת מופשט.
|
 |